Optimization of thermodynamic performance with simulated annealing algorithm: A geothermal power plant

Author(s):  
Gürcan Çetin ◽  
Ali Keçebaş
Author(s):  
Xinli Lu ◽  
Arnold Watson ◽  
Joe Deans

Since the first geothermal power plant was built at Larderello (Italy) in 1904, many attempts have been made to improve conversion efficiency. Among innovative technologies, using the Kalina cycle is considered as one of the most effective means of enhancing the thermodynamic performance for both high and low temperature heat source systems. Although initially used as the bottoming cycle of gas turbines and diesel engines, in the late 1980s the Kalina cycle was found to be attractive for geothermal power generation [1, 2, 3]. Different versions (KSC11, KSC12 and KSC13) were designated. Comparison between Kalina cycle and other power cycles can be found in later studies [4, 5, 6]. Here we examine KSC11, because it is specifically designed for geothermal power generation, with lower capital cost [3]. We compare this design with the existing Kawerau ORMAT binary plant in New Zealand. In addition, parametric sensitivity analysis of KCS11 has been carried out for the specific power output and net thermal efficiency by changing the temperatures of both heat source and heat sink for a given ammonia-water composition.


2013 ◽  
Vol 4 (2) ◽  
pp. 20-28
Author(s):  
Farhad Soleimanian Gharehchopogh ◽  
Hadi Najafi ◽  
Kourosh Farahkhah

The present paper is an attempt to get total minimum of trigonometric Functions by Simulated Annealing. To do so the researchers ran Simulated Annealing. Sample trigonometric functions and showed the results through Matlab software. According the Simulated Annealing Solves the problem of getting stuck in a local Maxterm and one can always get the best result through the Algorithm.


Sign in / Sign up

Export Citation Format

Share Document