scholarly journals A knowledge-based prognostics framework for railway track geometry degradation

2019 ◽  
Vol 181 ◽  
pp. 127-141 ◽  
Author(s):  
Juan Chiachío ◽  
Manuel Chiachío ◽  
Darren Prescott ◽  
John Andrews
2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


Author(s):  
Masood Taheri Andani ◽  
Andrew Peterson ◽  
Josh Munoz ◽  
Mehdi Ahmadian

The application of Doppler-based LIght Detection and Ranging (LIDAR) technology for determining track curvature and lateral irregularities, including alignment and gage variation, are investigated. The proposed method uses track measurements by two low-elevation, slightly tilted LIDAR sensors nominally pointed at the rail gage face on each track. The Doppler LIDAR lenses are installed with a slight forward angle to measure track speed in both longitudinal and lateral directions. The lateral speed measurements are processed for assessing the track gage and alignment variations, using a method that is based on the frequency bandwidth dissimilarities between the vehicle speed and track geometry irregularity. Using the results from an extensive series of tests with a body-mounted Doppler LIDAR system on-board a track geometry measurement railcar, the study indicates a close match between the LIDAR measurements and those made with existing sensors on-board the railcar. The field testing conducted during this study indicates that LIDAR sensors could provide a reliable, non-contact track monitoring instrument for field use in various weather and track conditions, potentially in a semi-autonomous or autonomous manner.


2019 ◽  
Vol 9 (20) ◽  
pp. 4347 ◽  
Author(s):  
Wladyslaw Koc ◽  
Cezary Specht ◽  
Jacek Szmaglinski ◽  
Piotr Chrostowski

At present, the problem of rail routes reconstruction in a global reference system is increasingly important. This issue is called Absolute Track Geometry, and its essence is the determination of the axis of railway tracks in the form of Cartesian coordinates of a global or local coordinate system. To obtain such a representation of the track centerline, the measurement methods are developed in many countries mostly by the using global navigation satellite system (GNSS) techniques. The accuracy of this type of measurement in favorable conditions reaches one centimeter. However, some specific conditions cause the additional supporting measurements with a use of such instruments as tachymetry, odometers, or accelerometers to be needed. One of the common issues of track axis reconstruction is transforming the measured GNSS antenna coordinates to the target position, i.e., to the place between rails on the level of rail heads. The authors in their previous works described the developed methodology, while this article presents a method of determining the correction of horizontal coordinates for measurements in arc sections of the railway track. The presence of a cant causes the antenna’s center to move away from the track axis, and for this reason, the results must be corrected. This article presents a method of calculation of mentioned corrections for positions obtained from mobile satellite surveying with additional inertial measurement. The algorithm presented in the article and its implementation have been illustrated on an example of a complex geometric layout, where cant transitions exist without transition curves in horizontal plane. Such a layout is not preferable due to the additional accelerations and their changes. However, it allows the verification of the presented methods.


2020 ◽  
Vol 6 ◽  
Author(s):  
Mikko Sauni ◽  
Heikki Luomala ◽  
Pauli Kolisoja ◽  
Esko Turunen

2020 ◽  
Vol 10 (9) ◽  
pp. 3091 ◽  
Author(s):  
Chayut Ngamkhanong ◽  
Chuah Ming Wey ◽  
Sakdirat Kaewunruen

Nowadays, timber sleepers are still used for ballasted railway tracks to carry passengers and transport goods. However, the process of natural decay causes the problem of timber sleeper degradation over time. A temporary “interspersed” approach is used to replace rotten timbers with concrete sleepers. This implementation has several inadequacies, as interspersed railway tracks have inconsistent stiffness and experience significant deterioration over the years. Increased heat due to the change in the global climate can induce a compression force in the continuous welded rail (CWR), leading to a change in track geometry called “track buckling”. A literature review shows that track buckling on plain tracks has been widely studied. However, the buckling of interspersed tracks has not been fully studied. This study presents 3D finite element modelling of interspersed railway tracks subjected to temperature change. The effect of the boundary conditions on the buckling shape is considered. The obtained results show that the interspersed approach may reduce the likelihood of track buckling. This study is the world’s first to investigate the buckling behaviour of interspersed railway tracks. The insight into interspersed railway tracks derived from this study will underpin the life cycle design, maintenance, and construction strategies related to the use of concrete sleepers as spot replacement sleepers in ageing railway track systems. The outcome of this study will help track engineers to improve the inspection of the lateral stiffness of interspersed tracks in areas prone to extreme temperature.


2019 ◽  
Vol 16 (7) ◽  
pp. 987-1001 ◽  
Author(s):  
Iman Soleimanmeigouni ◽  
Alireza Ahmadi ◽  
Arne Nissen ◽  
Xun Xiao
Keyword(s):  

2019 ◽  
Vol 15 (12) ◽  
pp. 1597-1612 ◽  
Author(s):  
Hamid Khajehei ◽  
Alireza Ahmadi ◽  
Iman Soleimanmeigouni ◽  
Arne Nissen
Keyword(s):  

2019 ◽  
Vol 11 (24) ◽  
pp. 2929 ◽  
Author(s):  
Rong Zou ◽  
Xiaoyun Fan ◽  
Chuang Qian ◽  
Wenfang Ye ◽  
Peng Zhao ◽  
...  

The precision of railway map is becoming a significant issue for autonomous train scheduling, monitoring and maintenance, related location-based service (LBS), and further ensuring travel safety. Mobile 3D laser scanning is an efficient method for making relative high-precision railway track maps, particularly during the night period of railway maintenance, for light detection and ranging (LiDAR) can work without ambient light. In this paper, we propose an efficient and accurate railway track vectorization method based on the LiDAR point clouds from the self-built train Mobile Laser Scanning (MLS) system. Our method takes full use of railway track geometry and reflection intensity feature of LiDAR, without any trajectory prior information. Firstly, clear track points are filtered by intensity; then, a K-means clustering fused Region-Grow Fitting algorithm is applied. It can not only extract the line vector of railway track, but also can tell the track branches apart, especially on bends and turnout. Experiments were carried on using point clouds with an average density of 490 points per square meter. The experimental results show that the method not only can quickly extract linear objects such as railway track and catenary, but also can detect the railways even in complex real-world topologies such as at bends and turnouts. The precision of the detection area in bends and turnouts are 90.32% and 81.31% respectively, the sensitivity is 83.27% and 83.33%, respectively. Moreover, it can identify the track networks.


Sign in / Sign up

Export Citation Format

Share Document