A pilot study of mechanical chest compressions with the LUCAS™ device in cardiopulmonary resuscitation

Resuscitation ◽  
2011 ◽  
Vol 82 (6) ◽  
pp. 702-706 ◽  
Author(s):  
David Smekal ◽  
Jakob Johansson ◽  
Tibor Huzevka ◽  
Sten Rubertsson
Author(s):  
Roberto Barcala-Furelos ◽  
Cristian Abelairas-Gómez ◽  
Alejandra Alonso-Calvete ◽  
Francisco Cano-Noguera ◽  
Aida Carballo-Fazanes ◽  
...  

Abstract Introduction: On-boat resuscitation can be applied by lifeguards in an inflatable rescue boat (IRB). Due to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2) and recommendations for the use of personal protective equipment (PPE), prehospital care procedures need to be re-evaluated. The objective of this study was to determine how the use of PPE influences the amount of preparation time needed before beginning actual resuscitation and the quality of cardiopulmonary resuscitation (CPR; QCPR) on an IRB. Methods: Three CPR tests were performed by 14 lifeguards, in teams of two, wearing different PPE: (1) Basic PPE (B-PPE): gloves, a mask, and protective glasses; (2) Full PPE (F-PPE): B-PPE + a waterproof apron; and (3) Basic PPE + plastic blanket (B+PPE). On-boat resuscitation using a bag-valve-mask (BVM) and high efficiency particulate air (HEPA) filter was performed sailing at 20km/hour. Results: Using B-PPE takes less time and is significantly faster than F-PPE (B-PPE 17 [SD = 2] seconds versus F-PPE 69 [SD = 17] seconds; P = .001), and the use of B+PPE is slightly higher (B-PPE 17 [SD = 2] seconds versus B+PPE 34 [SD = 6] seconds; P = .002). The QCPR remained similar in all three scenarios (P >.05), reaching values over 79%. Conclusion: The use of PPE during on-board resuscitation is feasible and does not interfere with quality when performed by trained lifeguards. The use of a plastic blanket could be a quick and easy alternative to offer extra protection to lifeguards during CPR on an IRB.


Resuscitation ◽  
2017 ◽  
Vol 118 ◽  
pp. e6 ◽  
Author(s):  
Chenguang Liu ◽  
Stacy Gehman ◽  
Dawn Jorgenson ◽  
Tom Lyster ◽  
Jason Coult ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 448-455
Author(s):  
Tiffany Wai Shan Lau ◽  
Anthony Robert Lim ◽  
Kyra Anne Len ◽  
Loren Gene Yamamoto

Background: Chest compression efficacy determines blood flow in cardiopulmonary resuscitation (CPR) and relies on body mechanics, so resuscitator weight matters. Individuals of insufficient weight are incapable of generating a sufficient downward chest compression force using traditional methods. Aims: This study investigated how a resuscitator's weight affects chest compression efficacy, determined the minimum weight required to perform chest compressions and, for children and adults below this minimum weight, examine alternate means to perform chest compressions. Methods: Volunteers aged 8 years and above were enrolled to perform video-recorded, music-facilitated, compression-only CPR on an audible click-confirming manikin for 2 minutes, following brief training. Subjects who failed this proceeded to alternate modalities: chest compressions by jumping on the lower sternum; and squat-bouncing (bouncing the buttocks on the chest). These methods were assessed via video review. Findings: There were 57 subjects. The 30 subjects above 40kg were all able to complete nearly 200 compressions in 2 minutes. Success rates declined in those who weighed less than 40kg. Below 30 kg, only one subject (29.9 kg weight) out of 14 could achieve 200 effective compressions. Nearly all of the 23 subjects who could not perform conventional chest compressions were able to achieve effective chest compressions using alternate methods. Conclusion: A weight below 40kg resulted in a declining ability to perform standard chest compressions effectively. For small resuscitators, the jumping and squat-bouncing methods resulted in sufficient compressions most of the time; however, chest recoil and injuries are concerns.


Author(s):  
Chuenruthai Angkoontassaneeyarat ◽  
Chaiyaporn Yuksen ◽  
Chetsadakon Jenpanitpong ◽  
Pemika Rukthai ◽  
Marisa Seanpan ◽  
...  

Abstract Background: Out-of-hospital cardiac arrest (OHCA) is a life-threatening condition with an overall survival rate that generally does not exceed 10%. Several factors play essential roles in increasing survival among patients experiencing cardiac arrest outside the hospital. Previous studies have reported that implementing a dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) program increases bystander CPR, quality of chest compressions, and patient survival. This study aimed to assess the effectiveness of a DA-CPR program developed by the Thailand National Institute for Emergency Medicine (NIEMS). Methods: This was an experimental study using a manikin model. The participants comprised both health care providers and non-health care providers aged 18 to 60 years. They were randomly assigned to either the DA-CPR group or the uninstructed CPR (U-CPR) group and performed chest compressions on a manikin model for two minutes. The sequentially numbered, opaque, sealed envelope method was used for randomization in blocks of four with a ratio of 1:1. Results: There were 100 participants in this study (49 in the DA-CPR group and 51 in the U-CPR group). Time to initiate chest compressions was statistically significantly longer in the DA-CPR group than in the U-CPR group (85.82 [SD = 32.54] seconds versus 23.94 [SD = 16.70] seconds; P <.001). However, the CPR instruction did not translate into better performance or quality of chest compressions for the overall sample or for health care or non-health care providers. Conclusion: Those in the CPR-trained group applied chest compressions (initiated CPR) more quickly than those who initiated CPR based upon dispatch-based CPR instructions.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Claudius Balzer ◽  
Franz J Baudenbacher ◽  
Antonio Hernandez ◽  
Michele M Salzman ◽  
Matthias L Riess ◽  
...  

Introduction: A higher chest compression fraction (CCF) or percentage of time providing chest compressions is associated with improved survival after cardiac arrest (CA). Pauses in chest compression duration during cardiopulmonary resuscitation (CPR) to palpate a pulse can reduce the CCF. Peripheral Intravenous Analysis (PIVA) is a novel method for determining cardiac and volume status using waveforms from a standard peripheral intravenous (IV) line. We hypothesize that PIVA will demonstrate the onset of return of spontaneous circulation (ROSC) without interruption of CPR. Methods: Eight Zucker Diabetic Fatty (ZDF) rats (4 lean, 4 diabetic) were intubated, ventilated, and cannulated with a 24g IV in the tail vein and a 22g IV in the femoral artery, each connected to a TruWave pressure transducer. Mechanical ventilation was discontinued to achieve CA. After 8 minutes, CPR began with mechanical ventilation, IV epinephrine, and chest compressions using 1.5 cm at 200 times per minute until mean arterial pressure (MAP) increased to 120 mmHg per arterial line. All waveforms were recorded and analyzed in LabChart. PIVA was measured using a Fourier transform of the peripheral venous waveform. Data are mean ± SD. Statistics: Unpaired student’s t-test (two-tailed), α = 05. Results: CA and ROSC were achieved in all 8 rats. Within 1 minute of CPR, there was a 70 ± 35 fold increase/decrease in PIVA during CPR that was temporally associated with ROSC. Within 8 ± 13 seconds of a reduction in PIVA, there was a rapid increase in end-tidal CO 2 . In all rats, ROSC occurred within 38 ± 9 seconds of the maximum PIVA value. Peripheral venous pressure decreased by 1.2 ± 0.9 mmHg during resuscitation and ROSC, which was not significant different at p=0.05. Conclusion: In this pilot study, PIVA detected ROSC without interrupting CPR. Use of PIVA may obviate the need pause CPR for pulse checks, and may result in a higher CCF and survival. Future studies will focus on PIVA and CPR efficacy.


2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Joshua W. Lampe ◽  
Yin Tai ◽  
George Bratinov ◽  
Theodore R. Weiland ◽  
Christopher L. Kaufman ◽  
...  

2019 ◽  
Author(s):  
Michał Ćwiertnia ◽  
Marek Kawecki ◽  
Tomasz Ilczak ◽  
Monika Mikulska ◽  
Mieczyslaw Dutka ◽  
...  

Abstract Background Maintaining highly effective cardiopulmonary resuscitation (CPR) can be particularly difficult when artificial respiration using a bag-valve-mask device, combined with chest compression have to be carried out by one person. The aim of the study is to compare the quality of CPR conducted by one paramedic using chest compression from the patient’s side, with compression carried out from behind the patient’s head. Methods The subject of the study were two methods of CPR – ‘standard’ (STD) and ‘over-the-head’ (OTH). The STD method consisted of 30 chest compressions from the patient’s side, and two attempts at artificial respiration after moving round to behind the patient’s head. In the OTH method, both compression and respiration were conducted from behind the patient’s head. Results Both CPR methods were conducted by 38 paramedics working in medical response teams. The average time of the interruptions between compression cycles (STD 9.184 s, OTH 7.316 s, p<0.001); the depth of compression 50–60 mm (STD 50.65%, OTH 60.22%, p<0.001); the rate of compression 100–120/min. (STD 46.39%, OTH 53.78%, p<0.001); complete chest wall recoil (STD 84.54%, OTH 91.46%, p<0.001); correct hand position (STD 99.32%, OTH method 99.66%, p<0.001). The remaining parameters showed no significant differences in comparison to reference values. Conclusions The demonstrated higher quality of CPR in the simulated research using the OTH method conducted by one person justifies the use of this method in a wider range of emergency interventions than only for CPR conducted in confined spaces.


Sign in / Sign up

Export Citation Format

Share Document