Sphaeripilosa wernerpilleri, a new peridinioid dinoflagellate genus and species from the late Miocene of Lake Pannon, Austria

2018 ◽  
Vol 252 ◽  
pp. 29-40
Author(s):  
Ali Soliman ◽  
Joyce Lucas-Clark
Keyword(s):  
Lethaia ◽  
2007 ◽  
Vol 32 (1) ◽  
pp. 47-60 ◽  
Author(s):  
PÁL MÜLLER ◽  
DANA H. GEARY ◽  
IMRE MAGYAR

2011 ◽  
Vol 62 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Wieske Paulissen ◽  
Stefan Luthi ◽  
Patrick Grunert ◽  
Stjepan Ćorić ◽  
Mathias Harzhauser

Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna BasinIn order to determine the relative contributions of tectonics and eustasy to the sedimentary infill of the Vienna Basin a high-resolution stratigraphic record of a Middle to Late Miocene sedimentary sequence was established for a well (Spannberg-21) in the central part of the Vienna Basin. The well is located on an intrabasinal high, the Spannberg Ridge, a location that is relatively protected from local depocentre shifts. Downhole magnetostratigraphic measurements and biostratigraphical analysis form the basis for the chronostratigraphic framework. Temporal gaps in the sedimentary sequence were quantified from seismic data, well correlations and high-resolution electrical borehole images. Stratigraphic control with this integrated approach was good in the Sarmatian and Pannonian, but difficult in the Badenian. The resulting sedimentation rates show an increase towards the Upper Sarmatian from 0.43 m/kyr to > 1.2 m/kyr, followed by a decrease to relatively constant values around 0.3 m/kyr in the Pannonian. The sequence reflects the creation of accommodation space during the pull-apart phase of the basin and the subsequent slowing of the tectonic activity. The retreat of the Paratethys from the North Alpine Foreland Basin during the Early Sarmatian temporarily increased the influx of coarsergrained sediment, but eventually the basin acted mostly as a by-pass zone of sediment towards the Pannonian Basin. At a finer scale, the sequence exhibits correlations with global eustasy indicators, notably during the Sarmatian, the time of greatest basin subsidence and full connectivity with the Paratethyan system. In the Pannonian the eustatic signals become weaker due to an increased isolation of the Vienna Basin from Lake Pannon.


2021 ◽  
Vol 151 (3) ◽  
pp. 305-326
Author(s):  
Vivien Csoma ◽  
Imre Magyar ◽  
Andrea Szuromi-Korecz ◽  
Krisztina Sebe ◽  
Orsolya Sztanó ◽  
...  

The large outcrop at Pécs-Danitzpuszta, southern Hungary, exposes a 65-meter-thick succession of calcareous marls, clay marls and calcareous sands that were deposited during the early history of Lake Pannon, a vast, Caspian-type lake in Central Europe in the late Miocene. Within the framework of the complex stratigraphic investigation of this succession, well preserved, relatively diverse benthic ostracod assemblages containing 39 taxa were recovered from 29 samples (16 samples were barren). Palaeoecological interpretation of the ostracod genera suggests that deposition took place in a low-energy environment, in the shallow sublittoral zone of Lake Pannon, in pliohaline (9–16‰ salinity) water. The entire succession was divided into four interval zones based on the first occurrences of assumedly useful marker fossils: Hemicytheria lorentheyi Zone (from sample D29), Hemicytheria tenuistriata Zone (from sample D17), Propontoniella candeo Zone (from sample D115) and Amplocypris abscissa Zone (from sample D209). Based on comparison to the Beočin section 150 km to the SE, where a lithologically and stratigraphically similar section was dated magnetostratigraphically by an international team, we tentatively assume that the Pannonian marl succession of the Pécs-Danitzpuszta outcrop represents the time interval of 11.6 to ca. 10 Ma.


2021 ◽  
Vol 151 (4) ◽  
pp. 411-422
Author(s):  
Krisztina Sebe

The Pécs-Danitzpuszta sand pit in southern Hungary exposes middle and upper Miocene (Badenian to Pannonian/Langhian to Tortonian) sediments along the mountain front fault zone of the Mecsek Mts and preserves an essential record of tectonic events during and after the early late Miocene, which are not exposed elsewhere in the region. In this paper we present structural observations recorded over 20 years of work, date the deformation events with mollusk biostratigraphy and make inferences on the structural evolution of the area. At the beginning of the time interval between 10.2–10.0 Ma, NNW–SSE (to NW–SE) extension created normal faults and negative flower structures. These show that extension-related fault activity lasted here up to the late Miocene. Shortly thereafter, still in the early part of the time interval between 10.2–10.0 Ma, N–S to NNW–SSE compression ensued and dominated the area ever since. Deformations under this stress field included reverse faulting in the Pannonian marls and sands, folding of the whole succession, with bedding-plane slip and shearingelated block rotation in the already deposited middle and upper Miocene marl layers and continuously changing bedding dips and southward thickening layers in the Pannonian sands. Lake level changes of Lake Pannon must have played a role in the formation of an angular unconformity within the sands besides compression. The compressional event can be explained by the Africa (Adria) – Europe convergence, but cannot be correlated regionally; it pre-dates basin inversion-related events reported from the region so far.


2016 ◽  
Vol 442 ◽  
pp. 84-95 ◽  
Author(s):  
Thomas A. Neubauer ◽  
Mathias Harzhauser ◽  
Oleg Mandic ◽  
Andreas Kroh ◽  
Elisavet Georgopoulou

Palynology ◽  
2013 ◽  
Vol 37 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Ali Soliman ◽  
Susanne Feist-Burkhardt ◽  
Mathias Harzhauser ◽  
Andrea K. Kern ◽  
Werner E. Piller

1999 ◽  
Vol 147 (3-4) ◽  
pp. 151-167 ◽  
Author(s):  
Imre Magyar ◽  
Dana H Geary ◽  
Pál Müller

2008 ◽  
Vol 270 (1-2) ◽  
pp. 102-115 ◽  
Author(s):  
Mathias Harzhauser ◽  
Andrea Kern ◽  
Ali Soliman ◽  
Klaus Minati ◽  
Werner E. Piller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document