Optimization of EDTA and citric acid for risk assessment in the remediation of lead contaminated soil

Rhizosphere ◽  
2021 ◽  
Vol 17 ◽  
pp. 100277
Author(s):  
Seyed Sajjad Hosseini ◽  
Amir Lakzian ◽  
Akram Halajnia ◽  
Bahar S. Razavi
2011 ◽  
Vol 414 ◽  
pp. 214-220
Author(s):  
Xiao Song Sun ◽  
An Ping Liu ◽  
Hang Zhou ◽  
Xiao Nan Sun ◽  
Jian Ming Sun

Based on the process of health risk assessment for Cd contaminated sites, study the relationship between exposure duration and recommended target of soil remediation. This paper discusses the changes (from 7.7 mg/kg to 5.0 mg/kg, from 9.1 mg/kg to 3.8 mg/kg) of recommended target for soil remediation when the exposure duration has large changes (EDa ranges from 6a to 36a, EDc ranges from 1a to 12a). The results point out that both EDa and EDc have effects on recommended target of soil remediation, and in general, exposure duration and recommended target of soil remediation vary inversely.


2011 ◽  
Vol 414 ◽  
pp. 93-98
Author(s):  
An Ping Liu ◽  
Xiao Nan Sun ◽  
Fang Yang ◽  
Xing Xing Yao

This paper describes the model of heavy metal-Cu contaminated soil remediation standard value based on risk assessment. In the Cu contamination risk assessment model, the main exposure methods are oral ingestion and inhalation through breathing, which not only simplifies the calculation but also make people get a clearer understanding of the way of Cu contamination. We get the simplified formula, calculate and discuss Cu contaminated soil remediation target value in specific parameters to provide reference and basis for the remediation of Cu contaminated soil.


2018 ◽  
Vol 58 (1) ◽  
pp. 50-64 ◽  
Author(s):  
Tang Qiang ◽  
Gu Fan ◽  
Gao Yufeng ◽  
Inui Toru ◽  
Katsumi Takeshi

Author(s):  
Zhihong Guo ◽  
Shuqin Zhang ◽  
Dajun Ren ◽  
Xiaoqing Zhang ◽  
Shuang Liu ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sara Asselin ◽  
Jani C. Ingram

Biosurfactants have recently gained attention as “green” agents that can be used to enhance the remediation of heavy metals and some organic matter in contaminated soils. The overall objective of this paper was to investigate rhamnolipid, a microbial produced biosurfactant, and its ability to leach uranium present in contaminated soil from an abandoned mine site. Soil samples were collected from two locations in northern Arizona: Cameron (site of open pit mining) and Leupp (control—no mining). The approach taken was to first determine the total uranium content in each soil using a hydrofluoric acid digestion, then comparing the amount of metal removed by rhamnolipid to other chelating agents EDTA and citric acid, and finally determining the amount of soluble metal in the soil matrix using a sequential extraction. Results suggested a complex system for metal removal from soil utilizing rhamnolipid. It was determined that rhamnolipid at a concentration of 150 μM was as effective as EDTA but not as effective as citric acid for the removal of soluble uranium. However, the rhamnolipid was only slightly better at removing uranium from the mining soil compared to a purified water control. Overall, this study demonstrated that rhamnolipid ability to remove uranium from contaminated soil is comparable to EDTA and to a lesser extent citric acid, but, for the soils investigated, it is not significantly better than a simple water wash.


2015 ◽  
Vol 300 ◽  
pp. 546-552 ◽  
Author(s):  
Fujun Ma ◽  
Changsheng Peng ◽  
Deyi Hou ◽  
Bin Wu ◽  
Qian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document