Co-robotics hands-on activities: A gateway to engineering design and STEM learning

2017 ◽  
Vol 97 ◽  
pp. 40-50 ◽  
Author(s):  
Saeedeh Ziaeefard ◽  
Michele H. Miller ◽  
Mo Rastgaar ◽  
Nina Mahmoudian
Author(s):  
Ana Villanueva ◽  
Ziyi Liu ◽  
Yoshimasa Kitaguchi ◽  
Zhengzhe Zhu ◽  
Kylie Peppler ◽  
...  

AbstractAugmented reality (AR) is a unique, hands-on tool to deliver information. However, its educational value has been mainly demonstrated empirically so far. In this paper, we present a modeling approach to provide users with mastery of a skill, using AR learning content to implement an educational curriculum. We illustrate the potential of this approach by applying this to an important but pervasively misunderstood area of STEM learning, electrical circuitry. Unlike previous cognitive assessment models, we break down the area into microskills—the smallest segmentation of this knowledge—and concrete learning outcomes for each. This model empowers the user to perform a variety of tasks that are conducive to the acquisition of the skill. We also provide a classification of microskills and how to design them in an AR environment. Our results demonstrated that aligning the AR technology to specific learning objectives paves the way for high quality assessment, teaching, and learning.


2021 ◽  
Vol 6 ◽  
Author(s):  
Nancy Butler Songer ◽  
Guillermo D. Ibarrola Recalde

The global pandemic and climate change have led to unprecedented environmental, social, and economic challenges with interdisciplinary STEM foundations. Even as STEM learning has never been more important, very few pre-college programs prepare students to address these challenges by emphasizing socio-scientific issue (SSI) problem solving and the engineering design of solutions to address local phenomena. The paper discusses the design and evaluation of a pre-college, SSI curricular unit where students expand their learning by creating solutions to increase biodiversity within local urban neighborhoods. The learning approach, which we call eco-solutioning, builds from current vision and policy documents in STEM education emphasizing phenomenon-centric instructional materials, science investigations, and engineering design. The paper outlines design principles for creating an eco-solutioning instructional unit that guides young students to: collect and analyze data on local organisms, use an engineering design approach to craft solutions to increase local biodiversity, and present their solutions to local city planners and community members. Two cycles of research studies evaluated student learning using paired t-tests. Results demonstrated significant pre-post learning outcomes in both research cycles. A third research cycle in the form of a summer extension program supported students as they implemented their local solutions. Conclusions highlight design principles for the successful creation of SSI curricular units centered on local environmental issues of interest to students, teachers, and stakeholders.


Author(s):  
Mohamed Gharib ◽  
Tala Katbeh ◽  
G. Benjamin Cieslinski ◽  
Brady Creel

Abstract Pre-college project-based learning programs are essential means to increase the students’ interest toward STEM (science, technology, engineering, and mathematics) disciplines and careers. Engineering-based projects have shown significant impact on the students’ interests. Therefore, developing countries are investing strategically in their emphasis to attract students to careers in STEM fields, specifically engineering and medicine. That resulted in a steady expansion of their educational pipeline in STEM; and while that emphasis remains, there is a new and urgent need for expertise in agriculture, environmental science, life sciences and sustainability to support the agriculture industry, which is working to secure independent sources of food for their population. New interventions must be devised to stimulate broader interest in STEM fields while also increasing students’ academic readiness for advanced studies in those areas. To target the requirement of increasing people’s competencies in STEM fields, various programs have been created and designed to inspire and broaden students’ inquisitiveness toward STEM. This paper presents an integrated science-engineering program, called Qatar Invents, designed to support and enhance students’ learning of science concepts while also increasing students’ understanding of global challenges in food and water security. This goes with close connection to the desire to increase in the domestic production of agricultural resources in developing countries in recent years. Qatar Invents would engage students into learning and applying fundamental engineering skills onto relatable real-world issues: namely, in the design of hydroponics systems. Qatar Invents challenges students to develop critical thinking and problem solving skills in solving modern problems through the use of the engineering design process. With hands-on challenges, modeling, and communication training, students are motivated to tackle problems related to food security where they create hydroponics projects. Qatar Invents’ learning objectives included: teamwork, using proper toolbox skills, understanding what is engineering, the process of brainstorming, creating successful innovative designs, building prototypes, and developing presentation skills. Throughout this program, the participants were equipped with hands-on knowledge and critical thinking skills that helped them achieve their objectives. Utilizing the engineering design process, the students worked in small teams to brainstorm ideas and create inventions. The topics covered during the program included the importance of an engineering notebook and documentation, principals of engineering graphics, basics of agricultural science, foundations of hydroponics, the brainstorming practice, generating a decision matrix, proof of concept, and pitching ideas. At the end of the program, the students came up with novel solutions to serious problems wherein unique hydroponics projects were produced and presented to a panel of experts. This program attempts to build bridges between developing countries’ STEM education pipeline and the new demand of talent in the agriculture sector. All pertinent details including the preparation, instructional materials, prototyping materials, and case studies are presented in this paper.


Author(s):  
Mohamed B. Trabia ◽  
Kevin Nelson

There is a trend toward increasing exposure of students to hands-on experience in mechanical engineering design courses as these courses are usually limited to generating calculations and drawings of mechanical designs. Students in these courses may lack the ability to visualize and create the physical objects that correspond to their calculations. This limitation may negatively affect students, especially those with limited hands-on experience. To address this issue, the Department of Mechanical Engineering, University of Nevada, Las Vegas (UNLV) started requiring students to create their design using a rapid prototyping machine as a part of the Mechanical Engineering Design Course (ME 440). Students in this course work in teams to create projects starting from abstract statements. They are required to use their calculations as a means to create solid models of the components of their designs and print them on the rapid prototyping machine. Such an approach results in a better understanding of the functionalities of components as well as fit and tolerance issues. Student feedback is used as well as future venues for improving the course.


Author(s):  
Nazmul Islam

Most of the engineering courses focus more on theory and very little on hands-on, project-based learning in the classroom. Integration of real-world engineering problems and applications in lower division engineering courses will produce engineering students, who will be technically sound and be able to execute and manage real-world projects, when they will do senior design projects in their final year of engineering study. To overcome the engineering design challenges we have developed iHOP (Ingenieŕia Hands on Project) and integrate it with our lower division engineering courses. iHOP has been developed to emphasis the design component at the University of Texas at Brownsville (UTB) Engineering Physics curriculum and the project is now an integral part of Introduction to Engineering class. The iHOP project is one that is challenging, fun, requires teamwork, associated with the engineering material being studied, low cost, and doable in a limited amount of time. The experience from iHOP project motivates our freshman students to choose a better senior design project in senior year of their college career. The objectives of the iHOP projects are — to have students develop teamwork skills, and to teach students basic engineering design concepts in a complementary format to the traditional lecture. Various techniques related to team selection, encouraging teamwork, incorporation of engineering topics, keeping costs down, project results presentations, and gathering feedback from students will also be presented in this paper. Integrating iHOP Project with Introduction to Engineering class helped us to improve our retention effort in the engineering department.


Sign in / Sign up

Export Citation Format

Share Document