Regional mapping of human settlements in southeastern China with multisensor remotely sensed data

2008 ◽  
Vol 112 (9) ◽  
pp. 3668-3679 ◽  
Author(s):  
Dengsheng Lu ◽  
Hanqin Tian ◽  
Guomo Zhou ◽  
Hongli Ge
Author(s):  
Ned Horning ◽  
Julie A. Robinson ◽  
Eleanor J. Sterling ◽  
Woody Turner ◽  
Sacha Spector

While the savannah elephant (Loxodonta africana) is listed by the International Union for Conservation of Nature (IUCN) as “vulnerable” because of declining abundance in some regions of Africa (Blanc 2008), populations in some protected areas of South Africa are growing rapidly (van Aarde and Jackson 2007). These populations can cause extensive modification of vegetation structure when their density increases (Owen-Smith 1996; Whyte et al. 2003; Guldemond and van Aarde 2007). Management methods such as culling, translocation, and birth control have not reduced density in some cases (van Aarde et al. 1999; Pimm and van Aarde 2001). Providing more space for elephants is one alternative management strategy, yet fundamental to this strategy is a clear understanding of habitat and landscape use by elephants. Harris et al. (2008) combined remotely sensed data with Global Positioning System (GPS) and traditional ethological observations to assess elephant habitat use across three areas that span the ecological gradient of historical elephant distribution. They explored influences on habitat use across arid savannahs (Etosha National Park in Namibia) and woodlands (Tembe Elephant Park in South Africa and Maputo Elephant Reserve in Mozambique). The researchers focused on three main variables—distance to human settlements, distance to water, and vegetation type. The authors used Landsat 7 ETMþ imagery to create vegetation maps for each location, employing supervised classification and maximum likelihood estimation. Across all sites, they recorded the coordinates of patches with different vegetation and of vegetation transitions to develop signatures for the maps. Elephants do not use all vegetation types, and it can be expedient to focus on presence rather than both presence and absence. Accordingly, the researchers used GPS to record the locations of elephants with the aim of identifying important land cover types for vegetation mapping. The authors mapped water locations in the wet and dry seasons using remotely sensed data and mapped human settlements using GPS, aerial surveys, and regional maps. They tracked elephants with radiotelemetry collars that communicated with the ARGOS satellite system, sending location data for most of the elephants over 24 h, and then remaining quiescent for the next 48 h to extend battery life.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.


Sign in / Sign up

Export Citation Format

Share Document