Comparison of multispectral airborne laser scanning and stereo matching of aerial images as a single sensor solution to forest inventories by tree species

2019 ◽  
Vol 231 ◽  
pp. 111208 ◽  
Author(s):  
Mikko Kukkonen ◽  
Matti Maltamo ◽  
Lauri Korhonen ◽  
Petteri Packalen
Author(s):  
Gintautas MOZGERIS ◽  
Ina BIKUVIENĖ ◽  
Donatas JONIKAVICIUS

The aim of this study was to test the usability of airborne laser scanning (ALS) data for stand-wise forest inventories in Lithuania based on operational approaches from Nordic countries, taking into account Lithuanian forest conditions and requirements for stand-wise inventories, such as more complex forests, unified requirements for inventory of all forests, i.e. no matter the ownership, availability of supporting material from previous inventories and high accuracy requirements for total volume estimation. Test area in central part of Lithuania (area 2674 ha) was scanned using target point density 1 m-2 followed by measurements of 440 circular field plots (area 100–500 m2). Detailed information on 22 final felling areas with all trees callipered (total area 42.7 ha) was made available to represent forest at mature age. Updated information from conventional stand-wise inventory was made available for the whole study area, too. A two phase sampling with nonparametric Most Similar Neighbor estimator was used to predict point-wise forest characteristics. Total volume of the stand per 1 ha was predicted with an root mean square error of 18.6 %, basal area – 17.7 %, mean diameter – 13.6 %, mean height – 7.9 % and number of tree – 42.8 % at plot-level with practically no significant bias. However, the relative root mean square errors increased 2–4 times when trying to predict forest characteristics by three major groups of tree species – pine, spruce and all deciduous trees taken together. Main conclusion of the study was that accuracy of predicting volume using ALS data decreased notably when targeting forest characteristics by three major groups of tree species.


2017 ◽  
Vol 9 (2) ◽  
pp. 108 ◽  
Author(s):  
Xiaowei Yu ◽  
Juha Hyyppä ◽  
Paula Litkey ◽  
Harri Kaartinen ◽  
Mikko Vastaranta ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 1917
Author(s):  
Alma Elizabeth Thuestad ◽  
Ole Risbøl ◽  
Jan Ingolf Kleppe ◽  
Stine Barlindhaug ◽  
Elin Rose Myrvoll

What can remote sensing contribute to archaeological surveying in subarctic and arctic landscapes? The pros and cons of remote sensing data vary as do areas of utilization and methodological approaches. We assessed the applicability of remote sensing for archaeological surveying of northern landscapes using airborne laser scanning (LiDAR) and satellite and aerial images to map archaeological features as a basis for (a) assessing the pros and cons of the different approaches and (b) assessing the potential detection rate of remote sensing. Interpretation of images and a LiDAR-based bare-earth digital terrain model (DTM) was based on visual analyses aided by processing and visualizing techniques. 368 features were identified in the aerial images, 437 in the satellite images and 1186 in the DTM. LiDAR yielded the better result, especially for hunting pits. Image data proved suitable for dwellings and settlement sites. Feature characteristics proved a key factor for detectability, both in LiDAR and image data. This study has shown that LiDAR and remote sensing image data are highly applicable for archaeological surveying in northern landscapes. It showed that a multi-sensor approach contributes to high detection rates. Our results have improved the inventory of archaeological sites in a non-destructive and minimally invasive manner.


Bird Study ◽  
2014 ◽  
Vol 61 (2) ◽  
pp. 204-219 ◽  
Author(s):  
Katrine Eldegard ◽  
John Wirkola Dirksen ◽  
Hans Ole Ørka ◽  
Rune Halvorsen ◽  
Erik Næsset ◽  
...  

Author(s):  
Leena Matikainen ◽  
Juha Hyyppä ◽  
Paula Litkey

During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.


Author(s):  
W. Ostrowski ◽  
M. Pilarska ◽  
J. Charyton ◽  
K. Bakuła

Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term “3D building models” can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.


2020 ◽  
Vol 12 (20) ◽  
pp. 3328
Author(s):  
Mohammad Imangholiloo ◽  
Ninni Saarinen ◽  
Markus Holopainen ◽  
Xiaowei Yu ◽  
Juha Hyyppä ◽  
...  

Information from seedling stands in time and space is essential for sustainable forest management. To fulfil these informational needs with limited resources, remote sensing is seen as an intriguing alternative for forest inventorying. The structure and tree species composition in seedling stands have created challenges for capturing this information using sensors providing sparse point densities that do not have the ability to penetrate canopy gaps or provide spectral information. Therefore, multispectral airborne laser scanning (mALS) systems providing dense point clouds coupled with multispectral intensity data theoretically offer advantages for the characterization of seedling stands. The aim of this study was to investigate the capability of Optech Titan mALS data to characterize seedling stands in leaf-off and leaf-on conditions, as well as to retrieve the most important forest inventory attributes, such as distinguishing deciduous from coniferous trees, and estimating tree density and height. First, single-tree detection approaches were used to derive crown boundaries and tree heights from which forest structural attributes were aggregated for sample plots. To predict tree species, a random forests classifier was trained using features from two single-channel intensities (SCIs) with wavelengths of 1550 (SCI-Ch1) and 1064 nm (SCI-Ch2), and multichannel intensity (MCI) data composed of three mALS channels. The most important and uncorrelated features were analyzed and selected from 208 features. The highest overall accuracies in classification of Norway spruce, birch, and nontree class in leaf-off and leaf-on conditions obtained using SCI-Ch1 and SCI-Ch2 were 87.36% and 69.47%, respectively. The use of MCI data improved classification by up to 96.55% and 92.54% in leaf-off and leaf-on conditions, respectively. Overall, leaf-off data were favorable for distinguishing deciduous from coniferous trees and tree density estimation with a relative root mean square error (RMSE) of 37.9%, whereas leaf-on data provided more accurate height estimations, with a relative RMSE of 10.76%. Determining the canopy threshold for separating ground returns from vegetation returns was found to be critical, as mapped trees might have a height below one meter. The results showed that mALS data provided benefits for characterizing seedling stands compared to single-channel ALS systems.


Sign in / Sign up

Export Citation Format

Share Document