MethaNet – An AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery

2022 ◽  
Vol 269 ◽  
pp. 112809
Author(s):  
Siraput Jongaramrungruang ◽  
Andrew K. Thorpe ◽  
Georgios Matheou ◽  
Christian Frankenberg
2020 ◽  
Author(s):  
P.E. Dhelie ◽  
V. Danielsen ◽  
J.E. Lie ◽  
S.J. Støen ◽  
A. Dustira ◽  
...  

2011 ◽  
Vol 4 (9) ◽  
pp. 1735-1758 ◽  
Author(s):  
T. Krings ◽  
K. Gerilowski ◽  
M. Buchwitz ◽  
M. Reuter ◽  
A. Tretner ◽  
...  

Abstract. MAMAP is an airborne passive remote sensing instrument designed to measure the dry columns of methane (CH4) and carbon dioxide (CO2). The MAMAP instrument comprises two optical grating spectrometers: the first observing in the short wave infrared band (SWIR) at 1590–1690 nm to measure CO2 and CH4 absorptions, and the second in the near infrared (NIR) at 757–768 nm to measure O2 absorptions for reference/normalisation purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an aeroplane, MAMAP surveys areas on regional to local scales with a ground pixel resolution of approximately 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h−1. The retrieval precision of the measured column relative to background is typically ≲1% (1σ). MAMAP measurements are valuable to close the gap between satellite data, having global coverage but with a rather coarse resolution, on the one hand, and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007, test flights were performed over two coal-fired power plants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO2 yr−1) and Schwarze Pumpe (11.9 Mt CO2 yr−1), about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions reported by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO2 and XCH4) and for the two inversion methods has been performed. Both methods – the Gaussian plume model fit and the Gaussian integral method – are capable of deriving estimates for strong point source emission rates that are within ±10% of the reported values, given appropriate flight patterns and detailed knowledge of wind conditions.


2016 ◽  
Author(s):  
Minchao Wang ◽  
Dayong Wang ◽  
Lu Rong ◽  
Yunxin Wang ◽  
Fengpeng Wang ◽  
...  

2010 ◽  
Vol 10 (7) ◽  
pp. 16307-16344 ◽  
Author(s):  
T. Oda ◽  
S. Maksyutov

Abstract. Emissions of CO2 from fossil fuel combustion are a critical quantity that must be accurately given in established flux inversion frameworks. Work with emerging satellite-based inversions requires spatiotemporally-detailed inventories that permit analysis of regional sources and sinks. Conventional approaches for disaggregating national emissions beyond the country and city levels based on population distribution have certain difficulties in their application. We developed a global 1 km×1 km fossil fuel CO2 emission inventory for the years 1980–2007 by combining a worldwide point source database and satellite observations of the global nightlight distribution. In addition to estimating the national emissions using global energy consumption statistics, emissions from point sources were estimated separately and were spatially allocated to exact locations indicated by the point source database. Emissions from other sources were distributed using a special nightlight dataset that had fewer saturated pixels compared with regular nightlight datasets. The resulting spatial distributions differed in several ways from those derived using conventional population-based approaches. Because of the inherent characteristics of the nightlight distribution, source regions corresponding to human settlements and land transportation were well articulated. Our distributions showed good agreement with a high-resolution inventory across the US at spatial resolutions that were adequate for regional flux inversions. The inventory will be incorporated into models for operational flux inversions that use observational data from the Japanese Greenhouse Gases Observing SATellite (GOSAT).


Sign in / Sign up

Export Citation Format

Share Document