scholarly journals Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?

2014 ◽  
Vol 31 ◽  
pp. 792-834 ◽  
Author(s):  
Tingzhen Ming ◽  
Renaud de_Richter ◽  
Wei Liu ◽  
Sylvain Caillol
Humanities ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 186 ◽  
Author(s):  
Jeroen Oomen

The development of climate engineering research has historically depended on mostly western, holistic perceptions of climate and climate change. Determinations of climate and climate change as a global system have played a defining role in the development of climate engineering. As a result, climate engineering research in general, and solar radiation management (SRM) in particular, is primarily engaged in research of quantified, whole-Earth solutions. I argue that in the potential act of solar radiation management, a view of climate change that relies on the holistic western science of the climatic system is enshrined. This view, dependent on a deliberative intentionality that seems connected to anthropocenic notions of responsibility and control, profoundly influences the assumptions and research methods connected to climate engineering. While this may not necessarily be to the detriment of climate engineering proposals—in fact, it may be the only workable conception of SRM—it is a conceptual limit to the enterprise that has to be acknowledged. Additionally, in terms of governance, reliability, and cultural acceptance, this limit could be a fundamental objection to future experimentation (or implementation).


2020 ◽  
Vol 10 (13) ◽  
pp. 4637 ◽  
Author(s):  
Frederike Neuber ◽  
Konrad Ott

In this article, we will establish a version of the buying time argument (BTA) in favor of Sulphur Aerosol Injection (SAI) Climate Engineering (CE). The idea is not to promote the deployment of such scheme, but rather to present the strongest possible argument pro SAI in order to look at its presuppositions, implications, critical points and uncertainties. In discussing BTA being the only morally sound argument in favor of SAI, the stakes and the overall framework will become visible. If, however, the strongest pro-SAI argument enables us to recognize some major flaws of this technology, this option should be disregarded.


2019 ◽  
Vol 10 (3) ◽  
pp. 453-472 ◽  
Author(s):  
Koen G. Helwegen ◽  
Claudia E. Wieners ◽  
Jason E. Frank ◽  
Henk A. Dijkstra

Abstract. Solar radiation management (SRM) has been proposed as a means to reduce global warming in spite of high greenhouse-gas concentrations and to lower the chance of warming-induced tipping points. However, SRM may cause economic damages and its feasibility is still uncertain. To investigate the trade-off between these (economic) gains and damages, we incorporate SRM into a stochastic dynamic integrated assessment model and perform the first rigorous cost–benefit analysis of sulfate-based SRM under uncertainty, treating warming-induced climate tipping and SRM failure as stochastic elements. We find that within our model, SRM has the potential to greatly enhance future welfare and merits being taken seriously as a policy option. However, if only SRM and no CO2 abatement is used, global warming is not stabilised and will exceed 2 K. Therefore, even if successful, SRM can not replace but only complement CO2 abatement. The optimal policy combines CO2 abatement and modest SRM and succeeds in keeping global warming below 2 K.


2020 ◽  
Author(s):  
Davide Marchegiani ◽  
Dietmar Dommenget

<p>Solar Radiation Management (SRM) is regarded as a tool which could potentially mitigate or completely offset global warming by increasing planetary albedo. However, this approach could potentially reduce precipitation as well, as shown in the latest Intergovernmental Panel on Climate Change (ICPP) 5<sup>th</sup> report. Thus, although SRM might weaken global climate risks, it may enhance those in some regions. Here, using the Globally Resolved Energy Balance (GREB) model, we present experiments designed to completely offset the temperature and precipitation response due to a CO<sub>2</sub>-doubling experiment (abrupt2×CO2). The main idea around which our study is built upon is to employ a localized and seasonally varying SRM, as opposed to the most recent Geo-Engineering experiments which just apply a global and homogeneous one. In order to achieve such condition, we carry out the computation by using an “artificial cloud cover”. The usage of this localized approach allows us to globally cut down temperature warming in the abrupt2×CO2 scenario by 99.8% (which corresponds to an increase of 0.07 °C on a global average basis), while at the same time only having minor changes in precipitation (0.003 mm/day on a global average basis). To achieve this the cloud cover is increased by about 8% on a global average. Moreover, neither temperature nor precipitation response are exacerbated when averaged over any IPCC Special Report on Extremes (SREX) region. Indeed, for temperatures, 90% of SREX regions averages fall within 0.3 °C change, with all regional mean anomalies being under 0.38 °C. Whereas, as far as precipitation is concerned, changes go up to 0.01 mm/day for 90% of SREX regions, with all of them changing by less than 0.02 mm/day. Similar results are achieved for seasonal variations, with Seasonal Cycle (DJF-JJA) having no major changes in both surface temperature and precipitation.</p>


Author(s):  
Han Somsen

This chapter discusses a host of what mostly are still isolated ad hoc technology-driven initiatives, usually in support of human (rights) imperatives, which effectively endeavour to engineer and re-engineer living and non-living environments in ways that have no natural, legal, or historical precedent. The umbrella term I propose to capture such initiatives is ‘environmental enhancement’. Potential examples that fit this definition include genetic modification of disease-transmitting mosquitoes to protect human health, solar radiation-management initiatives and other forms of climate engineering to sustain human life on earth, the creation of new life forms to secure food supplies and absorb population growth, and de-extinction efforts that help restore the integrity of ecosystems. The question this paper asks, in the words of Brownsword, is whether conventional environmental law ‘connects’ with environmental enhancement, focusing on EU environmental law, and whether states may be duty-bound to enhance environments in pursuit of human rights imperatives.


Sign in / Sign up

Export Citation Format

Share Document