Clean energy transition in Mexico: Policy recommendations for the deployment of energy storage technologies

2021 ◽  
Vol 135 ◽  
pp. 110407
Author(s):  
C.V. Diezmartínez
Author(s):  
José Juan González Márquez ◽  
Margarita González Brambila

This chapter analyses the role of electricity storage as an innovative strategy to attain the Mexican Government’s goals regarding carbon dioxide emission reduction and energy transition. The survey includes the analysis of the different electricity storage technologies as well as the legal framework governing electricity storage as the fifth link of the energy supply chain from a comparative perspective. The authors discuss whether energy storage is a generation or a distribution/transmission asset. The chapter also analyses Mexico’s experiences in energy storage and briefly describes the way it is regulated in other jurisdictions. Finally, the authors propose the regulation of energy storage as a separate licensed activity.


2012 ◽  
Vol 462 ◽  
pp. 225-232 ◽  
Author(s):  
Rui Cao ◽  
Zi Long Yang

Today,there is a continuous need for more clean energy, this need has facilitated the increasing of distributed generation technology and renewable energy generation technology. In order to ensure the supply of renewable energy generation continuously and smoothly in distributed power generation system, need to configure a amount of energy storage system for storing excess power generated. This article outlines some energy storage technologies which are used in power systems in the current and future, summarizes the working principles and features of several storage units, provides the basis for the design of energy storage system.


2021 ◽  
Author(s):  
Harald Desing ◽  
Rolf Widmer

Our society has become accustomed to demanding energy whenever we want it. When decarbonising the energy system, this becomes a fundamental challenge due to the extent of energy storage required for matching the intermittent renewable supply to society's current demand. Available energy storage technologies are energetically expensive either to build - like batteries - or to operate - like synthetic fuels. Due to these energetic costs, requiring more storage leads to a slower energy transition and consequently higher climate risks. This paper explores the energy implications of adding energy storage to fast and complete energy transition pathways. Technological innovation can mitigate the problem to some extent by focusing on reduced energy intensity of storage alongside with improved turnaround efficiency. Most influential is, however, the extent of storage that we want: reducing storage demand greatly accelerates the transition and therefore reduces the induced probability of violating 1.5°C peak heating. In addition, it can immediately be implemented with readily available and scalable technologies. However, it requires a fundamental rethinking of the way we use energy in society: aligning energy demand with renewable supply as best as we can. Following the course of the sun, just like sunflowers do, we need to schedule our most energy-intensive activities around midday and summer, while reducing demand during night and winter. The sunflower society has the potential to accelerate climate action and therewith reduce climate risks.


Nature Energy ◽  
2017 ◽  
Vol 2 (9) ◽  
Author(s):  
Noah Kittner ◽  
Felix Lill ◽  
Daniel M. Kammen

2019 ◽  
Vol 9 (16) ◽  
pp. 3270 ◽  
Author(s):  
Sesha S. Srinivasan ◽  
Elias K. Stefanakos

Clean energy and fuel storage is often required for both stationary and automotive applications. Some of the clean energy and fuel storage technologies currently under extensive research and development are hydrogen storage, direct electric storage, mechanical energy storage, solar-thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and on-board vehicular transportation. This Special Issue thus serves the need to promote exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to a practical and sustainable infrastructure.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4384 ◽  
Author(s):  
Sanneke Kloppenburg ◽  
Robin Smale ◽  
Nick Verkade

The transition to a low-carbon energy system goes along with changing roles for citizens in energy production and consumption. In this paper we focus on how residential energy storage technologies can enable householders to contribute to the energy transition. Drawing on literature that understands energy systems as sociotechnical configurations and the theory of ‘material participation’, we examine how the introduction of home batteries affords new roles and energy practices for householders. We present qualitative findings from interviews with householders and other key stakeholders engaged in using or implementing battery storage at household and community level. Our results point to five emerging storage modes in which householders can play a role: individual energy autonomy; local energy community; smart grid integration; virtual energy community; and electricity market integration. We argue that for householders, these storage modes facilitate new energy practices such as providing grid services, trading, self-consumption, and sharing of energy. Several of the storage modes enable the formation of prosumer collectives and change relationships with other actors in the energy system. We conclude by discussing how householders also face new dependencies on information technologies and intermediary actors to organize the multi-directional energy flows which battery systems unleash. With energy storage projects currently being provider-driven, we argue that more space should be given to experimentation with (mixed modes of) energy storage that both empower householders and communities in the pursuit of their own sustainability aspirations and serve the needs of emerging renewable energy-based energy systems.


2020 ◽  
Vol 1 (1) ◽  
pp. 110-115
Author(s):  
Sayed Belal Hashimi ◽  
Hameedullah Zaheb ◽  
Najib Rahman Sabory

2021 ◽  
Author(s):  
Ulrich Sigmar Schubert ◽  
Oliver Nolte ◽  
Ivan Volodin ◽  
Christian Stolze ◽  
Martin D. Hager

Flow Batteries (FBs) currently are one of the most promising large-scale energy storage technologies for energy grids with a large share of renewable electricity generation. Among the main technological challenges...


Sign in / Sign up

Export Citation Format

Share Document