Infection of mouse bone marrow-derived immature dendritic cells with classical swine fever virus C-strain promotes cells maturation and lymphocyte proliferation

2013 ◽  
Vol 95 (3) ◽  
pp. 1268-1270
Author(s):  
Fu-Ying Zheng ◽  
Chang-Qing Qiu ◽  
Huai-Jie Jia ◽  
Guo-Hua Chen ◽  
Shuang Zeng ◽  
...  
2004 ◽  
Vol 85 (6) ◽  
pp. 1633-1641 ◽  
Author(s):  
C. P. Carrasco ◽  
R. C. Rigden ◽  
I. E. Vincent ◽  
C. Balmelli ◽  
M. Ceppi ◽  
...  

Functional disruption of dendritic cells (DCs) is an important strategy for viral pathogens to evade host defences. Monocytotropic viruses such as classical swine fever virus (CSFV) could employ such a mechanism, since the virus can suppress immune responses and induce apoptosis without infecting lymphocytes. Here, CSFV was shown to infect and efficiently replicate in monocyte- and in bone marrow-derived DCs. Interestingly, the infected DCs displayed neither modulated MHC nor CD80/86 expression. Stimulation of DCs with IFN-α/TNF-α or polyinosinic–polycytidylic acid (pIC) induced phenotypic maturation with increased MHC and CD80/86 expression, both with mock-treated and infected DCs. In addition, the T cell stimulatory capacity of CSFV-infected DCs was maintained both in a polyclonal T cell stimulation and in specific antigen-presentation assays, requiring antigen uptake and processing. Interestingly, similar to macrophages, CSFV did not induce IFN-α responses in these DCs and even suppressed pIC-induced IFN-α induction. Other cytokines including interleukin (IL)-6, IL-10, IL-12 and TNF-α were not modulated. Taken together, these results demonstrated that CSFV can replicate in DCs and control IFN type I responses, without interfering with the immune reactivity. These results are interesting considering that DC infection with RNA viruses usually results in DC activation.


2021 ◽  
Vol 22 (16) ◽  
pp. 8795
Author(s):  
Ferran Soldevila ◽  
Jane C. Edwards ◽  
Simon P. Graham ◽  
Helen R. Crooke ◽  
Dirk Werling ◽  
...  

Classical swine fever (CSF) is a highly contagious disease caused by the classical swine fever virus (CSFV). The live attenuated C-strain vaccine is highly efficacious, initiating protection within several days of delivery. The vaccine strain is detected in the tonsil early after inoculation, yet little is known of the role that tonsillar immune cells might play in initiating protection. Comparing the C-strain vaccine with the pathogenic CSFV Alfort-187 strain, changes in the myeloid cell compartment of the tonsil were observed. CSFV infection led to the emergence of an additional CD163+CD14+ cell population, which showed the highest levels of Alfort-187 and C-strain infection. There was also an increase in both the frequency and activation status (as shown by increased MHC-II expression) of the tonsillar conventional dendritic cells 1 (cDC1) in pigs inoculated with the C-strain. Notably, the activation of cDC1 cells coincided in time with the induction of a local CSFV-specific IFN-γ+ CD8 T cell response in C-strain vaccinated pigs, but not in pigs that received Alfort-187. Moreover, the frequency of CSFV-specific IFN-γ+ CD8 T cells was inversely correlated to the viral load in the tonsils of individual animals. Accordingly, we hypothesise that the activation of cDC1 is key in initiating local CSFV-specific CD8 T cell responses which curtail early virus replication and dissemination.


2019 ◽  
Vol 164 (6) ◽  
pp. 1619-1628 ◽  
Author(s):  
Tong Cao ◽  
Shengnan Zhang ◽  
Xiaoye Li ◽  
Yonghao Xu ◽  
Zuohuan Wang ◽  
...  

2001 ◽  
Vol 81 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Jemeršić Lorena ◽  
Darja Barlič-Maganja ◽  
Mirko Lojkić ◽  
Josip Madić ◽  
Jože Grom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document