mediated priming
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Anna Ohradanova-Repic ◽  
Laura Gebetsberger ◽  
Gabor Tajti ◽  
Gabriela Ondrovicova ◽  
Romana Prazenicova ◽  
...  

In addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), which is responsible for the proteolytic processing of the SARS-CoV-2 spike protein as virus priming for cell entry, appears as a rational therapeutic target for the clearance of SARS-CoV-2 infection. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19. Here, we tested the inhibitory capacities of the human milk glycoprotein lactoferrin and its N-terminal peptide pLF1, which we identified as inhibitors of plasminogen, a serine protease homologous to TMPRSS2. In vitro proteolysis assays revealed that, unlike full-length lactoferrin, pLF1 significantly inhibited the proteolytic activity of TMPRSS2. pLF1 inhibited both the proteolytic processing of the SARS-CoV-2 spike protein and the SARS-CoV-2 infection of simian Vero cells. Because lactoferrin is a natural product and several biologically active peptides, such as the N-terminally derived lactoferricins, are produced naturally by pepsin-mediated digestion, natural or synthetic peptides from lactoferrin represent well-achievable candidates for supporting prevention and treatment of COVID-19.


2021 ◽  
Vol 7 (40) ◽  
Author(s):  
Kendelle J. Murphy ◽  
Daniel A. Reed ◽  
Claire Vennin ◽  
James R. W. Conway ◽  
Max Nobis ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jungkyun Choi ◽  
Wooshik Choi ◽  
Yunji Joo ◽  
Haeun Chung ◽  
Dokyun Kim ◽  
...  

AbstractPeripheral artery disease is a progressive, devastating disease that leads to critical limb ischemia (CLI). Therapeutic angiogenesis using stem cell therapy has emerged as a promising approach for its treatment; however, adapting cell-based therapy has been limited by poor cell survival and low treatment efficiency. To overcome unmet clinical needs, we developed a fibroblast growth factor 2 (FGF2)-immobilized matrix that enabled control of cell adhesion to the surface and exerted a priming effect on the cell. Human adipose-derived stem cells (hASCs) grown in this matrix formed a functionally enhanced cells spheroid (FECS-Ad) that secreted various angiogenic factors including interleukin-8 (IL-8). We demonstrated that IL-8 was upregulated by the FGF2-mediated priming effect during FECS-Ad formation. Immobilized FGF2 substrate induced stronger IL-8 expression than soluble FGF2 ligands, presumably through the FGFR1/JNK/NF-κB signaling cascade. In IL-8-silenced FECS-Ad, vascular endothelial growth factor (VEGF) expression was decreased and angiogenic potential was reduced. Intramuscular injection of FECS-Ad promoted angiogenesis and muscle regeneration in mouse ischemic tissue, while IL-8 silencing in FECS-Ad inhibited these effects. Taken together, our data demonstrate that IL-8 contributes to therapeutic angiogenesis and suggest that FECS-Ad generated using the MBP-FGF2 matrix might provide a reliable platform for developing therapeutic agents to treat CLI.


2021 ◽  
Vol 6 (61) ◽  
pp. eabe2550
Author(s):  
Daniel F. R. Boehmer ◽  
Simone Formisano ◽  
Carina C. de Oliveira Mann ◽  
Stephan A. Mueller ◽  
Michael Kluge ◽  
...  

Cytoplasmic double-stranded RNA is sensed by RIG-I–like receptors (RLRs), leading to induction of type I interferons (IFN-Is), proinflammatory cytokines, and apoptosis. Here, we elucidate signaling mechanisms that lead to cytokine secretion and cell death induction upon stimulation with the bona fide RIG-I ligand 5′-triphosphate RNA (3p-RNA) in tumor cells. We show that both outcomes are mediated by dsRNA-receptor families with RLR being essential for cytokine production and IFN-I–mediated priming of effector pathways but not for apoptosis. Affinity purification followed by mass spectrometry and subsequent functional analysis revealed that 3p-RNA bound and activated oligoadenylate synthetase 1 and RNase L. RNase L–deficient cells were profoundly impaired in their ability to undergo apoptosis. Mechanistically, the concerted action of translational arrest triggered by RNase L and up-regulation of NOXA was needed to deplete the antiapoptotic MCL-1 to cause intrinsic apoptosis. Thus, 3p-RNA–induced apoptosis is a two-step process consisting of RIG-I–dependent priming and an RNase L–dependent effector phase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mélanie Labalestra ◽  
Nicolas Stefaniak ◽  
Laurent Lefebvre ◽  
Chrystel Besche-Richard

Hypomanic personality, hyperthymic temperament and irritable temperament are considered as psychological vulnerability factors to bipolar disorders. Semantic memory is impaired in bipolar patients. Spreading activation is among the probable candidates for accounting this impairment. The aim of this study was to assess spreading activation according to vulnerability factors continuum to determine whether it could be a factor of vulnerability to bipolar disorders. A sample of 61 healthy volunteers was recruited. Spreading activation was assessed by semantic mediated priming implemented in a double lexical decision task. Results shown that semantic mediated priming was negatively associated to hyperthymic temperament and irritable temperament. Impairment in semantic memory, and more specifically spreading activation, appear to be a cognitive factor of vulnerability to bipolar disorders. Our results can contribute to a better understanding of semantic impairment in vulnerable population and in bipolar disorder.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arruje Hameed ◽  
Tahir Farooq ◽  
Amjad Hameed ◽  
Munir Ahmad Sheikh

Water-deficit stress negatively affects seed germination, seedling development, and plant growth by disrupting cellular and metabolic functions, reducing the productivity and yield of field crops. In this study, sodium silicate (SS) has been employed as a seed priming agent for acclimation to mild water-deficit stress by invoking priming memory in wheat plants. In pot experiments, the SS-primed (20, 40, and 60 mM) and non-primed control seeds were allowed to grow under normal and mild water-deficit conditions. Subsequently, known methods were followed for physiological and biochemical studies using flag leaves of 98-day mature wheat plants. The antioxidant and hydrolytic enzymes were upregulated, while proteins, reducing sugars, total sugars, and glycine betaine increased significantly in the flag leaves of wheat plants originated from SS-treated seeds compared to the control under mild water-deficit stress. Significant decreases in the malondialdehyde (MDA) and proline contents suggested a controlled production of reactive oxygen species, which resulted in enhanced cell membrane stability. The SS priming induced a significant enhancement in yield, plant biomass, and 100-grain weight of wheat plants under water-deficit stress. The improvement in the yield parameters indicated the induction of Si-mediated stress acclimation in SS-primed seeds that elicited water-deficit tolerance until the maturity of plants, ensuring sustainable productivity of climate-smart plants.


2020 ◽  
Vol 11 ◽  
Author(s):  
Georgios Valsamakis ◽  
Norbert Bittner ◽  
Nina E. Fatouros ◽  
Reinhard Kunze ◽  
Monika Hilker ◽  
...  

Plants can respond to eggs laid by herbivorous insects on their leaves by preparing (priming) their defense against the hatching larvae. Egg-mediated priming of defense is known for several plant species, including Brassicaceae. However, it is unknown yet for how long the eggs need to remain on a plant until a primed defense state is reached, which is ecologically manifested by reduced performance of the hatching larvae. To address this question, we used Arabidopsis thaliana, which carried eggs of the butterfly Pieris brassicae for 1–6 days prior to exposure to larval feeding. Our results show that larvae gained less biomass the longer the eggs had previously been on the plant. The strongest priming effect was obtained when eggs had been on the plant for 5 or 6 days, i.e., for (almost) the entire development time of the Pieris embryo inside the egg until larval hatching. Transcript levels of priming-responsive genes, levels of jasmonic acid-isoleucine (JA-Ile), and of the egg-inducible phytoalexin camalexin increased with the egg exposure time. Larval performance studies on mutant plants revealed that camalexin is dispensable for anti-herbivore defense against P. brassicae larvae, whereas JA-Ile – in concert with egg-induced salicylic acid (SA) – seems to be important for signaling egg-mediated primed defense. Thus, A. thaliana adjusts the kinetics of its egg-primed response to the time point of larval hatching. Hence, the plant is optimally prepared just in time prior to larval hatching.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 805
Author(s):  
Henry Christopher Janse van Rensburg ◽  
Zoltan Takács ◽  
Florentina Freynschlag ◽  
Ebru Toksoy Öner ◽  
Claudia Jonak ◽  
...  

Naturally derived molecules can be used as priming or defense stimulatory agents to protect against biotic stress. Fructans have gained strong interest due to their ability to induce resistance in a number of crop species. In this study, we set out to establish the role of fructan-induced immunity against the fungal pathogen Botrytis cinerea in Arabidopsis thaliana. We show that both inulin- and levan-type fructans from different sources can enhance Arabidopsis resistance against B. cinerea. We found that inulin from chicory roots and levan oligosaccharides from the exopolysaccharide-producing bacterium Halomonas smyrnensis primed the NADPH-oxidase-mediated reactive oxygen species (ROS) burst in response to the elicitors flg22, derived from the bacterial flagellum, and oligogalacturonides (OGs), derived from the host cell wall. Neither induced a direct ROS burst typical of elicitors. We also found a primed response after infection with B. cinerea for H2O2 accumulation and the activities of ascorbate peroxidase and catalase. Sucrose accumulated as a consequence of fructan priming, and glucose and sucrose levels increased in fructan-treated plants after infection with B. cinerea. This study shows that levan-type fructans, specifically from bacterial origin, can prime plant defenses and that both inulin and levan oligosaccharide-mediated priming is associated with changes in ROS dynamics and sugar metabolism. Establishing fructan-induced immunity in Arabidopsis is an important step to further study the underlying mechanisms since a broad range of biological resources are available for Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document