Excited state intramolecular single proton transfer mechanism of pigment yellow 101 in solid state: Experiment and DFT calculation

Author(s):  
Shen Shen ◽  
Xian Liu ◽  
Jianqi Sun ◽  
Mingda Wang ◽  
Zhengjun Jiang ◽  
...  
2016 ◽  
Vol 4 (16) ◽  
pp. 3599-3606 ◽  
Author(s):  
Toshiki Mutai ◽  
Tatsuya Ohkawa ◽  
Hideaki Shono ◽  
Koji Araki

The color of ESIPT luminescence of HPIP is tuned in a wide range by the introduction of aryl group(s), and thus a series of PIPs showing blue to red emission is realized.


2006 ◽  
Vol 110 (14) ◽  
pp. 4638-4648 ◽  
Author(s):  
Ewa Sikorska ◽  
Igor Khmelinskii ◽  
Maciej Kubicki ◽  
Wiesław Prukała ◽  
Marcin Hoffmann ◽  
...  

2020 ◽  
Author(s):  
Dominik Göbel ◽  
Daniel Duvinage ◽  
Tim Stauch ◽  
Boris Nachtsheim

Herein, we present minimalistic single-benzene, excited-state intramolecular proton transfer (ESIPT) based fluorophores as powerful solid state emitters. The very simple synthesis gave access to all four regioisomers of nitrile-substituted 2(oxazolinyl)phenols (MW = 216.1). In respect of their emission properties they can be divided into aggregation-induced emission enhancement (AIEE) luminophores (1-CN and 2-CN), dual state emission (DSE) emitters (3-CN) and aggregation-caused quenching (ACQ) fluorophores (4‐CN). Remarkably, with compound 1-CN we discovered a minimalistic ESIPT based fluorophore with extremely high quantum yield in the solid state ΦF = 87.3% at λem = 491 nm. Furthermore, quantum yields in solution were determined up to ΦF = 63.0%, combined with Stokes shifts up till 11.300 cm–1. Temperature dependent emission mapping, crystal structure analysis and time-dependent density functional theory (TDDFT) calculations gave deep insight into the origin of the emission properties.<br>


Sign in / Sign up

Export Citation Format

Share Document