Atomic charge and atomic dipole modeling of gas-phase infrared intensities of fundamental bands for out–of–plane CH and CF bending vibrations

Author(s):  
Wagner E. Richter ◽  
Leonardo J. Duarte ◽  
Roy E. Bruns
2021 ◽  
Author(s):  
Wagner Richter ◽  
Leonardo J. Duarte ◽  
Roy E. Bruns

<div>Population analyses based on point charge approximations accurately estimating the equilibrium dipole moment will systematically fail when predicting infrared intensities of out-of-plane vibrations of planar molecules, whereas models based on both charges and dipoles will always succeed. It is not a matter of how the model is devised, but on its number of degrees of freedom. Population analyses based on point charges are very limited in terms of the amount of meaningful chemical information they provide, whereas models employing both atomic charges and atomic dipoles should be preferred for molecular distortions. A good model should be able to correctly describe not only static, equilibrium structures but also distorted geometries in order to correctly assess information from vibrating molecules. The limitations of point charge models also hold for distortions much larger than those encountered vibrationally.</div>


Author(s):  
Adil Yucel ◽  
Alaeddin Arpaci ◽  
Ekrem Tufekci

In this study, free in-plane and out-of-plane bending vibrations of frame structures have been analyzed together with torsional vibration. Axial extension, rotational inertia and shear effects have also been considered. The frame structure has been constructed as having two beams with doubly symmetric cross-sections and connected at any angle to each other. These types of frames frequently appear on ships as bridge wings which are probably the most problematic members experiencing severe vibration. Internal damping has been incorporated into the analyses by using a complex modulus of elasticity. Natural frequencies have been obtained analytically by solving simultaneous linear equations of complex coefficients. A finite element analysis has also been conducted to verify the analytical results. Furthermore, an experimental modal analysis has been carried out and the results have been compared with theoretical ones in tables for various connection angles and damping factors. The agreement among results has been found to be good.


2002 ◽  
Vol 57 (8) ◽  
pp. 645-649
Author(s):  
Durga Prasad Ojha ◽  
V. G. K. M. Pisipati

ECCPA statistical analysis has been carried out to determine the configurational preferences of a pair of 5-(4-ethylcyclohexyl)-2-(4-cyanophenyl) pyrimidine () molecules. The CNDO/2 method has been employed to evaluate the net atomic charge and atomic dipole components at each atomic centre of the molecule. The configurational energy has been computed using the Rayleigh-Schrödinger perturbation theory. The total interaction energies obtained by these computations were used to calculate the probability of each configuration in vacuum and in a dielectric medium (benzene) at the phase transition temperature using the Maxwell-Boltzmann formula. On the basis of stacking, in-plane and terminal interaction energy calculations, all possible geometrical arrangements of the molecular pair have been considered. An attempt has been made to explain the nematogenic behavior of liquid crystals and thereby develop a molecular model for liquid crystallinity.


1986 ◽  
Vol 64 (11) ◽  
pp. 2152-2161 ◽  
Author(s):  
R. A. Back ◽  
J. M. Parsons

The visible absorption spectrum of 1,2-cyclobutanedione has been measured in the gas phase at wavelengths between 4000 and 5100 Å. The absorption is attributed to the allowed π* ← n+, 1B1 ← 1A1 transition corresponding to the first excited singlet state. The spectrum shows a complex well-resolved vibrational structure which has been analysed, with some 125 bands measured and assigned. The bands at the longer wavelengths show sharp rotational fine structure, not yet analysed. The strongest band in the spectrum at 4933 Å has been assigned as the 0–0 band, while a band almost as strong at 4820 Å is attributed to excitation of one quantum of [Formula: see text], the a2 out-of-plane carbonyl bending vibration, and it is suggested that this band owes its intensity to vibronic coupling. A number of symmetric vibrations are also excited in the spectrum, but with no long progressions. Sequence bands running to the blue with an interval of about 72 cm−1 are prominent throughout the spectrum, and are assigned to v13, the a2 ring-twisting vibration. Other hot bands were also observed involving v13 which permitted estimation of energy levels for this vibration both in the ground state and the excited state. The infrared spectrum was also measured and analysed in the gas phase between 600 and 4000 cm−1, and 14 bands were assigned to fundamental vibrations; some of these assignments, at the lower frequencies, are uncertain.


Sign in / Sign up

Export Citation Format

Share Document