scholarly journals Research on estimation models of the spectral characteristics of soil organic matter based on the soil particle size

Author(s):  
Shugang Xie ◽  
Yuhuan Li ◽  
Xi Wang ◽  
Zhaoxia Liu ◽  
Kailing Ma ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 217 ◽  
Author(s):  
Yun Chen ◽  
Jinliang Wang ◽  
Guangjie Liu ◽  
Yanlin Yang ◽  
Zhiyuan Liu ◽  
...  

Soil organic matter (SOM) is an important index to evaluate soil fertility and soil quality, while playing an important role in the terrestrial carbon cycle. The technology of hyperspectral remote sensing is an important method to estimate SOM content efficiently and accurately. This study researched the best hyperspectral estimation model for SOM content in Shangri-La forest soil. The spectral reflectance of soils with sizes of 2 mm, 1 mm, 0.50 mm, and 0.25 mm were measured indoors. After smoothing and de-noising, the reciprocal reflectance (RR), logarithmic reflectance (LR), first-derivative reflectance (FR), reciprocal first-derivative reflectance (RFR), logarithmic first-derivative reflectance (LFR), and mathematical transformations of the original spectral reflectance (REF) were carried out to analyze the relevance of spectral reflectance and SOM content and extract the characteristic bands. Finally the simple linear regression (SLR), multiple stepwise linear regression (SMLR), and partial least squares regression (PLSR) models for SOM content estimation were established. The results showed that: (1) With the decrease of soil particle size, the spectral reflectance increased. The smaller the soil particle sizes, the more obvious was the increase in spectral reflectance. (2) The sensitive bands of SOM were mainly in the 580–690 nm range (correlation coefficient (R) > 0.6, p-value (p) < 0.01), and the spectral information of SOM could be significantly enhanced by first-order differential transformation. (3) Comparing the three models, PLSR had better estimation ability than SMLR and SLR. The precision of the 0.25 mm soil particle size and the LFR index in the PLSR estimation model of SOM content was the best (coefficient of determination of validation (Rv2) = 0.91, root mean square error of validation (RMSEv) = 13.41, the ratio of percent deviation (RPD) = 3.33). The results provide a basis for monitoring SOM content rapidly in the forests of Northwest Yunnan, and provide a reference for forest SOM estimation in other areas.


2001 ◽  
Vol 28 (3) ◽  
pp. 341-348 ◽  
Author(s):  
S A Wasay ◽  
W J Parker ◽  
P J Van Geel

A study of soil contamination due to the disposal of waste from a battery industry was conducted. The soil particle size, organic matter content, and buffering capacity were characterized. The heavy metal content of the soil was characterized with soil depth, soil particle size, and with respect to the fraction of the soil by which it was retained. Lead was found to be the dominant contaminant with all other metals present at considerably lower concentrations. Most of the lead was retained in the fraction of the soil that had a particle size less than 2 mm. This fraction represented 40.8% of the soil and contained 24 600 mg Pb/kg of soil. A particle size analysis indicated that 45.3% of soil particles were found to be greater than 4.75 mm. The pH of the contaminated soil in water was found to be 7.6 and was similar to the background soil. The similarity in pH was attributed to the high calcium content of the native soil. The lead content in the native soil that was collected 100 m away from the contaminated site was found to be 1967 mg/kg in the soil with particle sizes less than 2 mm (contaminated soil). The difference in pH between KCl solution (pH 7.0) and in water was found to be –0.6 indicating that the pH value was above the point of zero salt effect. An evaluation of the buffering capacity revealed that 297 mL of 0.5 M HNO3 per kg of soil was required to substantially modify the soil pH. The heavy metals in the soil were sequentially extracted to quantify the water soluble, exchangeable, carbonate, oxides, organic matter, and residual fractions. The Pb concentrations were mainly found in the carbonate and oxide fractions of the soil.Key words: heavy metals, soil pollution, characterization, retention form.


Sign in / Sign up

Export Citation Format

Share Document