Validation of spectrophotometric method to quantify cabotegravir in simulated vaginal fluid and porcine vaginal tissue in ex vivo permeation and retention studies from thermosensitive and mucoadhesive gels

Author(s):  
Sulistiawati ◽  
Cindy Kristina Enggi ◽  
Hansel Tridatmojo Isa ◽  
Stevens Wijaya ◽  
Komang Agus Rai Ardika ◽  
...  
2021 ◽  
Author(s):  
Patricia Rocha de Araújo ◽  
Giovana Maria Fioramonti Calixto ◽  
Victor Hugo Sousa Araújo ◽  
Mariana Rillo Sato ◽  
Camila Fernanda Rodero ◽  
...  

Abstract The present study reports the performance of the pigment hypericin (HYP)-loaded poloxamer-based mucoadhesive in situ gelling liquid crystalline precursor system (LCPS) for the treatment of vulvovaginal candidiasis (VVC) in mice. LCPS composed of 40% of ethoxylated and propoxylated cetyl alcohol, 30% of oleic acid and cholesterol (7:1), 30% of a dispersion of 16% poloxamer 407 and 0.05% of HYP (HYP-LCPS) was prepared and characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS) and ex vivo permeation and retention studies across vaginal porcine mucosa were performed. In addition, the antifungal properties of the HYP-LCPS were evaluated in a murine in vivo model; for this, infected C57BL female mice groups were treated with both HYP in solution and HYP-LCPS, and after 6 days colony forming unit (CFU)/ml count was performed. PLM and SAXS confirmed that HYP-LCPS is a microemulsion situated in boundary transition region confirming its action as an LCPS. When in contact with simulated vaginal fluid, HYP-LCPS became rigid and exhibited maltase crosses and bragg peaks characteristics of lamellar phase. Ex vivo permeation and retention studies showed that HYP-LCPS provides a localized treatment on the superficial layers of porcine vaginal mucosa. HYP-LCPS induced a significant reduction in the number of CFU/ml in the mice; thus this formulation indicated it is as effective as a commercial dosage form. It was concluded that LCPS maintains the biological activity of HYP and provides an adequate drug delivery system for this lipophilic molecule at the vaginal mucosa, being a promising option in cases of VVC.


2020 ◽  
Author(s):  
Lungwani Muungo

Objectives: Self-administered vaginal rings are a promising method for delivery of topical anti-HIV microbicidesand might offer an adherence advantage over daily or coitally-dependent dosage forms such as gels. This trialassessed the safety and pharmacokinetic aspects of the Dapivirine Vaginal Ring-004 when worn as multiple rings oversequential periods of ring use by healthy, sexually-active, HIV-negative women.Methods: This double-blind trial was conducted among 48 women (18-40 years). Participants were randomlyassigned to two groups (A or B) and received (3:1) either the dapivirine or a placebo vaginal ring. Group A used tworings over a 56-day period and Group B used three rings over a 57-day period. Safety evaluations were conductedthroughout the trial. Dapivirine concentrations were measured in plasma, vaginal fluid and cervical tissue samplescollected during and after the 56 days (Group A) or 57 days (Group B) of vaginal ring use.Results: Ring-004 was safe and well tolerated in all participants. The pharmacokinetic profile demonstrated arapid increase in plasma and vaginal fluid concentrations and achieved concentrations in vaginal fluids and cervicaltissue well above the in vitro IC99 in cervical tissue (3.3 ng/mL) that were sustained for a 28 to 35-day ring use period(approximately 3000 times higher in vaginal fluids and 14 -1000 times higher in cervical tissue). Drug levels wereassociated with significant inhibitory activity of genital secretions against HIV ex vivo, a biomarker of pharmacodynamics.Individual plasma dapivirine concentrations did not exceed 553 pg/mL and were well below plasma concentrations atthe maximum tolerated dose for oral treatment (mean Cmax 2286 ng/mL).Conclusions: The consecutive use of several rings over a period of up to 57 days was safe and well tolerated, andPK data indicate that a single Ring-004 is likely to be protective for at least 35 days.


Author(s):  
Ashwin Kumar Tulasi ◽  
Anil Goud Kandhula ◽  
Ravi Krishna Velupula

Topiramate is a second-generation antiepileptic drug used in partial, generalized seizures as an oral tablet. Oral route of administration is most convenient but shows delayed absorption. Moreover, in emergency cases, parenteral administration is not possible as it requires medical assistance. Hence, the present study was aimed to develop topiramate mucoadhesive nanoparticles for intranasal administration using ionotropic gelation method. The developed nanoparticles were evaluated for physico-chemical properties like particle size, zeta potential, surface morphology, drug content, entrapment efficiency, in vitro drug release, mucoadhesive strength, and ex vivo permeation studies in excised porcine nasal mucosa. Optimized nanoparticle formulation (T9) was composed oil mucoadhesive agent (Chitosan 1% w/w), cross linking polymer (TPP) and topiramate 275mg, 100mg and 4% respectively. It showed particle size of 350nm, high encapsulation efficacy and strong mucoadhesive strength. In vitro drug diffusion of optimized formulation showed 95.12% release of drug after 180min. Ex-vivo permeation of drug across nasal mucosa was   88.05 % after 180min. Nasocilial toxicity studies showed optimized formulation did not damage the nasal mucosa. Thus, the intranasal administration of topiramate using chitosan can be a promising alternative for brain targeting and the treatment of epilepsy.


2020 ◽  
Vol 10 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Sheetu Wadhwa ◽  
Ashana Puri

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at target site, which requires frequent administration and poor patient compliance. Objective: The aim of current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for treatment of inflammatory skin disorders. Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test). Results: The particle size analyses revealed average diameter and polydispersity index of selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion i.e. 21.90 ± 1.92 μg/cm2 which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®. Conclusion: Research suggests efficacy of the developed MTZ loaded microemulsion in treatment of chronic skin inflammatory disorders.


1999 ◽  
Vol 179 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Jagdish Jaiswal ◽  
Ramarao Poduri ◽  
Ramesh Panchagnula

2015 ◽  
Vol 494 (1) ◽  
pp. 490-497 ◽  
Author(s):  
Giuseppina Ioele ◽  
Lorena Tavano ◽  
Michele De Luca ◽  
Gaetano Ragno ◽  
Nevio Picci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document