One-point calibration of Saha-Boltzmann plot to improve accuracy and precision of quantitative analysis using laser-induced breakdown spectroscopy

2019 ◽  
Vol 160 ◽  
pp. 105692 ◽  
Author(s):  
Luís Carlos Leva Borduchi ◽  
Débora Marcondes Bastos Pereira Milori ◽  
Paulino Ribeiro Villas-Boas
Author(s):  
Raquel C Machado ◽  
Diego Victor Babos ◽  
Daniel Fernandes Andrade ◽  
Edenir Rodrigues Pereira-Filho

Quantitative analysis requires several efforts to obtain an adequate calibration method to overcome matrix effects employing direct solid analysis by laser-induced breakdown spectroscopy (LIBS). To this end, in this study,...


Author(s):  
Fu Chang ◽  
Jianhong Yang ◽  
Huili Lu ◽  
Haixia Li

It is significant to improve the repeatability of quantitative analysis of laser-induced breakdown spectroscopy (LIBS) in one-shot measurement where the skill of averaging is not valid because multiple measurements are...


2020 ◽  
pp. 000370282097304
Author(s):  
Amal A. Khedr ◽  
Mahmoud A. Sliem ◽  
Mohamed Abdel-Harith

In the present work, nanoparticle-enhanced laser-induced breakdown spectroscopy was used to analyze an aluminum alloy. Although LIBS has numerous advantages, it suffers from low sensitivity and low detection limits compared to other spectrochemical analytical methods. However, using gold nanoparticles helps to overcome such drawbacks and enhances the LIBS sensitivity in analyzing aluminum alloy in the current work. Aluminum was the major element in the analyzed samples (99.9%), while magnesium (Mg) was the minor element (0.1%). The spread of gold nanoparticles onto the Al alloy and using a laser with different pulse energies were exploited to enhance the Al alloy spectral lines. The results showed that Au NPs successfully improved the alloy spectral lines intensity by eight times, which could be useful for detecting many trace elements in higher matrix alloys. Under the assumption of local thermodynamic equilibrium, the Boltzmann plot was used to calculate the plasma temperature. Besides, the electron density was calculated using Mg and H lines at Mg(I) at 285.2 nm and Hα(I) at 656.2 nm, respectively. Three-dimensional contour mapping and color fill images contributed to understanding the behavior of the involved effects.


2017 ◽  
Vol 32 (6) ◽  
pp. 1166-1176 ◽  
Author(s):  
Xiao Fu ◽  
Fa-Jie Duan ◽  
Ting-Ting Huang ◽  
Ling Ma ◽  
Jia-Jia Jiang ◽  
...  

A fast variable selection method combining iPLS and mIPW-PLS is proposed to reduce the dimensions of the spectrum for LIBS quantitative analysis.


2018 ◽  
Vol 21 (3) ◽  
pp. 034012 ◽  
Author(s):  
Congyuan PAN ◽  
Jiao HE ◽  
Guangqian WANG ◽  
Xuewei DU ◽  
Yongbin LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document