Effect of water deficit and rewatering on leaf gas exchange and transpiration decline of excised leaves of four grapevine (Vitis vinifera L.) cultivars

2009 ◽  
Vol 121 (4) ◽  
pp. 434-439 ◽  
Author(s):  
L.G. Santesteban ◽  
C. Miranda ◽  
J.B. Royo
2005 ◽  
Vol 153 (6) ◽  
pp. 350-357 ◽  
Author(s):  
M. Moriondo ◽  
S. Orlandini ◽  
A. Giuntoli ◽  
M. Bindi

2014 ◽  
Vol 170 ◽  
pp. 228-236 ◽  
Author(s):  
Solomon T. Endeshaw ◽  
Paolo Sabbatini ◽  
Gianfranco Romanazzi ◽  
Annemiek C. Schilder ◽  
Davide Neri

2016 ◽  
Vol 43 (9) ◽  
pp. 827 ◽  
Author(s):  
Vinay Pagay ◽  
Vivian Zufferey ◽  
Alan N. Lakso

Recent climatic trends of higher average temperatures and erratic precipitation patterns are resulting in decreased soil moisture availability and, consequently, periods of water stress. We studied the effects of seasonal water stress on grapevine (Vitis vinifera L. cv. Riesling grafted onto 101–14 (Vitis riparia Michx.×Vitis rupestris Scheele) rootstock) shoot growth, leaf gas exchange, xylem morphology and hydraulic performance in the cool-climate Finger Lakes region of New York. A plastic rain exclusion tarp was installed on the vineyard floor to create a soil moisture deficit and consequently induce vine water stress. Weekly measurements of predawn leaf and midday stem water potentials (Ψmd) were made, and two contrasting shoot length classes, long (length >2.0m) and short (length <1.0m), were monitored. Growth of both long and short shoots was positively correlated with Ψmd but no difference in water status was found between the two. Compared with rain-fed vines, water-stressed vines had lower photosynthesis and stomatal conductance later in the season when Ψmd dropped below –1.2MPa. Long shoots had three-fold higher xylem-specific hydraulic conductivity values than short shoots. Long shoots experiencing water stress were less vulnerable to xylem cavitation than shorter shoots even though they had more large-diameter vessels. The lower vulnerability to cavitation of long shoots may be attributed to less xylem intervessel pitting being found in long shoots, consistent with the air-seeding hypothesis, and suggests that a hydraulic advantage enables them to maintain superior growth and productivity under water stress.


1996 ◽  
Vol 36 (7) ◽  
pp. 861 ◽  
Author(s):  
H Schaper ◽  
EK Chacko ◽  
SJ Blaikie

Gas exchange, leaf water status, soil water use and nut yield of cashew trees were monitored during the reproductive phase in 2 consecutive years (1988 and 1989). Treatment 1 comprised continuous irrigation from the end of the wet season in April until harvest in October; T2, irrigation between flowering (mid June) and harvest; and T3, no irrigation. Irrigation was applied by under-tree sprinkler at 43 mm/week in 1988 and 64 mm/week in 1989. Measurement of leaf gas exchange, chlorophyll content and nut production showed that trees in T2 were as productive as those in T1 (>1.3 kg kernel/tree). In T3, water deficit caused a 4-fold reduction in leaf photosynthesis and reduced leaf chlorophyll content from about 600 to 400 mg/m2 during fruit development. There was no effect on the number of hermaphrodite flowers produced (both ranging from 0 to 15 hermaphrodite flowers/panicle) but the water deficit was associated with a lower kernel yield (1.16 kg kernel/tree). Commercial yields (kg kernel/tree) in irrigated treatments were 20% greater than in the non-irrigated treatment and the kernels from irrigated trees were of a higher grade (kernel recovery >32% in T1 and T2 compared with 27.4% in T3). These results suggest that irrigation of established cashew plantations in the tropical regions of northern Australia can be restricted to the period between flowering and harvest without reducing yield.


Sign in / Sign up

Export Citation Format

Share Document