Public health benefits of reducing exposure to ambient fine particulate matter in South Africa

2019 ◽  
Vol 684 ◽  
pp. 610-620 ◽  
Author(s):  
Katye E. Altieri ◽  
Samantha L. Keen
2014 ◽  
Vol 48 (23) ◽  
pp. 13573-13582 ◽  
Author(s):  
Iyad Kheirbek ◽  
Jay Haney ◽  
Sharon Douglas ◽  
Kazuhiko Ito ◽  
Steven Caputo ◽  
...  

Author(s):  
Arnold Kamis ◽  
Rui Cao ◽  
Yifan He ◽  
Yuan Tian ◽  
Chuyue Wu

In this research, we take a multivariate, multi-method approach to predicting the incidence of lung cancer in the United States. We obtain public health and ambient emission data from multiple sources in 2000–2013 to model lung cancer in the period 2013–2017. We compare several models using four sources of predictor variables: adult smoking, state, environmental quality index, and ambient emissions. The environmental quality index variables pertain to macro-level domains: air, land, water, socio-demographic, and built environment. The ambient emissions consist of Cyanide compounds, Carbon Monoxide, Carbon Disulfide, Diesel Exhaust, Nitrogen Dioxide, Tropospheric Ozone, Coarse Particulate Matter, Fine Particulate Matter, and Sulfur Dioxide. We compare various models and find that the best regression model has variance explained of 62 percent whereas the best machine learning model has 64 percent variance explained with 10% less error. The most hazardous ambient emissions are Coarse Particulate Matter, Fine Particulate Matter, Sulfur Dioxide, Carbon Monoxide, and Tropospheric Ozone. These ambient emissions could be curtailed to improve air quality, thus reducing the incidence of lung cancer. We interpret and discuss the implications of the model results, including the tradeoff between transparency and accuracy. We also review limitations of and directions for the current models in order to extend and refine them.


2019 ◽  
Author(s):  
Jaakko Kukkonen ◽  
Mikko Savolahti ◽  
Yuliia Palamarchuk ◽  
Timo Lanki ◽  
Väinö Nurmi ◽  
...  

Abstract. We have developed an integrated tool of assessment that can be used for evaluating the public health costs caused by the concentrations of fine particulate matter (PM2.5) in ambient air. The model can be used in assessing the impacts of various alternative air quality abatement measures, policies and strategies. The model has been applied for the evaluation of the costs of the domestic emissions that influence the concentrations of PM2.5 in Finland in 2015. The model includes the impacts on human health; however, it does not address the impacts on climate change or the state of the environment. First, the national Finnish emissions were evaluated using the Finnish Regional Emission Scenarios model (FRES) on a resolution of 250 × 250 m2 for the whole of Finland. Second, the atmospheric dispersion was analyzed by using the chemical transport model SILAM and the source-receptor matrices contained in the FRES model. Third, the health impacts were assessed by combining the spatially resolved concentration and population datasets, and by analyzing the impacts for various health outcomes. Fourth, the economic impacts for the health outcomes were evaluated. The model can be used to evaluate the costs of the health damages for various emission source categories, for a unit of emissions of PM2.5. It was found that economically the most effective measures would be the reduction of the emissions in urban areas of (i) road transport, (ii) non-road vehicles and machinery, and (iii) residential wood combustion. The reduction of the precursor emissions of PM2.5 was clearly less effective, compared with reducing directly the emissions of PM2.5. We have also designed a user-friendly web-based tool of assessment that is available open access.


2022 ◽  
Vol 160 ◽  
pp. 107082
Author(s):  
Yang Xie ◽  
Ying Wang ◽  
Yichi Zhang ◽  
Wenhong Fan ◽  
Zhaomin Dong ◽  
...  

2020 ◽  
Vol 20 (15) ◽  
pp. 9371-9391
Author(s):  
Jaakko Kukkonen ◽  
Mikko Savolahti ◽  
Yuliia Palamarchuk ◽  
Timo Lanki ◽  
Väinö Nurmi ◽  
...  

Abstract. We have developed an integrated assessment tool that can be used for evaluating the public health costs caused by the concentrations of fine particulate matter (PM2.5) in ambient air. The model can be used to assess the impacts of various alternative air quality abatement measures, policies and strategies. The model has been applied to evaluate the costs of the domestic emissions that influence the concentrations of PM2.5 in Finland in 2015. The model includes the impacts on human health; however, it does not address the impacts on climate change or the state of the environment. First, the national Finnish emissions were evaluated using the Finnish Regional Emission Scenarios (FRESs) model on a resolution of 250×250 m2 for the whole of Finland. Second, the atmospheric dispersion was analysed by using the chemical transport model, namely the System for Integrated modeLling of Atmospheric coMposition (SILAM) model, and the source receptor matrices contained in the FRES model. Third, the health impacts were assessed by combining the spatially resolved concentration and population data sets and by analysing the impacts for various health outcomes. Fourth, the economic impacts of the health outcomes were evaluated. The model can be used to evaluate the costs of the health damages for various emission source categories and for a unit of emissions of PM2.5. It was found that the economic benefits, in terms of avoided public health costs, were largest for measures that will reduce the emissions of (i) road transport, (ii) non-road vehicles and machinery, and (iii) residential wood combustion. The reduction in the precursor emissions of PM2.5 resulted in clearly lower benefits when compared with directly reducing the emissions of PM2.5. We have also designed a user-friendly, web-based assessment tool that is open access.


Sign in / Sign up

Export Citation Format

Share Document