scholarly journals Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station

2020 ◽  
Vol 713 ◽  
pp. 136249 ◽  
Author(s):  
Donghao Xu ◽  
Alison Carswell ◽  
Qichao Zhu ◽  
Fusuo Zhang ◽  
Wim de Vries
Geoderma ◽  
2017 ◽  
Vol 285 ◽  
pp. 57-63 ◽  
Author(s):  
Qinggong Mao ◽  
Xiankai Lu ◽  
Kaijun Zhou ◽  
Hao Chen ◽  
Xiaomin Zhu ◽  
...  

Nature ◽  
1934 ◽  
Vol 133 (3363) ◽  
pp. 560-560

2014 ◽  
Vol 40 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Dragan Čakmak ◽  
Jelena Beloica ◽  
Veljko Perović ◽  
Ratko Kadović ◽  
Vesna Mrvić ◽  
...  

Abstract Acidification, as a form of soil degradation is a process that leads to permanent reduction in the quality of soil as the most important natural resource. The process of soil acidification, which in the first place implies a reduction in soil pH, can be caused by natural processes, but also considerably accelerated by the anthropogenic influence of excessive S and N emissions, uncontrolled deforestation, and intensive agricultural processes. Critical loads, i.e. the upper limit of harmful depositions (primarily of S and N) which will not cause damages to the ecosystem, were determined in Europe under the auspices of the Executive Committee of the CLRTAP in 1980. These values represent the basic indicators of ecosystem stability to the process of acidification. This paper defines the status of acidification for the period up to 2100 in relation to the long term critical and target loading of soil with S and N on the territory of Krupanj municipality by applying the VSD model. The Inverse Distance Weighting (IDW) geostatistic module was used as the interpolation method. Land management, particularly in areas susceptible to acidification, needs to be focused on well-balanced agriculture and use of crops/seedlings to achieve the optimum land use and sustainable productivity for the projected 100-year period.


2005 ◽  
Vol 54 (3-4) ◽  
pp. 309-324 ◽  
Author(s):  
László Márton

The effect of natural rainfall and N, P and K nutrients on the yield of maize was investigated in 16 years of a long-term fertilization experiment set up at the Experimental Station of the Institute in Nagyhörcsök. The soil was a calcareous chernozem, having the following characteristics: pH (KCl): 7.3, CaCO 3 : 5%, humus: 3%, clay: 20-22%, AL-soluble P 2 O 5 : 60-80, AL-soluble K 2 O: 180-200, KCl-soluble Mg: 150-180; KCl+ EDTA-soluble Mn, Cu and Zn content: 80-150, 2-3 and 1-2 mg·kg -1 . The experiment had a split-split-plot design with 20 treatments in 4 replications, giving a total of 80 plots. The treatments involved three levels each of N and P and two levels of K in all possible combinations (3×3×2=18), together with an untreated control and one treatment with a higher rate of NPK, not included in the factorial system. The main results can be summarized as follows: An analysis of the weather in the 16 experimental years revealed that there were no average years, as two years were moderately dry (1981, 1982), eight were very dry (1973, 1978, 1986, 1989, 1990, 1993, 1997, 2002) and six were very wet (1969, 1974, 1977, 1994, 1998, 2001). In dry years the N, NP and NK treatments led to a yield increment of over 3.0  t·ha -1 (3.2 t·ha -1 ) (81%) compared with the unfertilized control, while the full NPK treatment caused hardly any increase in the maize yield (7.2 t·ha -1 ). In the case of drought there was a 4.0% yield loss in the N, NP and NK treatments compared to the same treatments in the dry years. This loss was only 1.0% in the NPK treatment. In very wet years the positive effects of a favourable water supply could be seen even in the N, NP and NK treatments (with yields of around 7.4 t·ha -1 ). The yield increment in these treatments compared with the droughty years averaged 8%, while balanced NPK fertilization led to a further 2% increase (10%). Significant quadratic correlations were found between the rainfall quantity during the vegetation period and the yield, depending on the nutrient supplies (Ø: R = 0.7787***, N: R = 0.8997***, NP: R = 0.9338***, NK: R = 0.9574***, NPK: R = 0.8906***). The optimum rainfall quantity and the corresponding grain yield ranged from 328-349 mm and 5.0-7.7 t·ha -1 , respectively, depending on the fertilizer rate. The grain yield increment obtained per mm rainfall in the case of optimum rainfall supplies was found to be 14.3-23.2 kg·ha -1 , while the quantity of rainfall utilized during the vegetation period for the production of 1 kg air-dry matter in the case of maximum yield amounted to 698, 449, 480, 466 and 431 litres in the control, N, NP, NK and NPK treatments, respectively. It was clear from the 43-year meteorological database for the experimental station (1961-2003) that over the last 23 years (1981-2003) the weather has become substantially drier. Compared with the data for the previous 20 years (1961-1980) there was an increase of 20, 500 and 50% in the number of average, dry and droughty years, no change in the number of wet years and a 71% drop in the number of very wet years.


Nature ◽  
1922 ◽  
Vol 109 (2747) ◽  
pp. 828-828

2019 ◽  
Vol 98 ◽  
pp. 712-722 ◽  
Author(s):  
Sunny Cho ◽  
Gordon Dinwoodie ◽  
Yiyang Fu ◽  
Salim Abboud ◽  
Larry Turchenek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document