Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants

2020 ◽  
Vol 727 ◽  
pp. 138788 ◽  
Author(s):  
Mykhailo Savin ◽  
Gabriele Bierbaum ◽  
Jens Andre Hammerl ◽  
Céline Heinemann ◽  
Marijo Parcina ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 684
Author(s):  
Sofia Svebrant ◽  
Robert Spörndly ◽  
Richard H. Lindberg ◽  
Therese Olsen Sköldstam ◽  
Jim Larsson ◽  
...  

Hospital sewage constitutes an important point source for antibiotics and antibiotic-resistant bacteria due to the high antibiotic use. Antibiotic resistance can develop and cause problems in sewage systems within hospitals and municipal wastewater treatment plants, thus, interventions to treat hospital sewage on-site are important. Ozonation has proven effective in treating relatively clean wastewater, but the effect on untreated wastewater is unclear. Therefore, we piloted implementation of ozonation to treat wastewater in a tertiary hospital in Uppsala, Sweden. We measured active pharmaceutical ingredients (APIs) using liquid chromatography-mass spectrometry and antibiotic-resistant Enterobacteriaceae using selective culturing pre- and post-ozonation. Comparing low (1 m3/h) and high (2 m3/h) flow, we obtained a ‘dose-dependent’ effect of API reduction (significant reduction of 12/29 APIs using low and 2/29 APIs using high flow, and a mean reduction of antibiotics of 41% using low vs. 6% using high flow, 25% vs. 6% for all APIs). There was no significant difference in the amount of antibiotic-resistant Enterobacteiaceae pre- and post-ozonation. Our results demonstrate that ozonation of untreated wastewater can reduce API content. However, due to the moderate API decrease and numerous practical challenges in the on-site setting, this specific ozonation system is not suitable to implement at full scale in our hospital.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


Sign in / Sign up

Export Citation Format

Share Document