scholarly journals Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and machine learning tools

Author(s):  
Daniel Saboe ◽  
Hamidreza Ghasemi ◽  
Ming Ming Gao ◽  
Mirjana Samardzic ◽  
Kiril D. Hristovski ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1547
Author(s):  
Jian Sha ◽  
Xue Li ◽  
Man Zhang ◽  
Zhong-Liang Wang

Accurate real-time water quality prediction is of great significance for local environmental managers to deal with upcoming events and emergencies to develop best management practices. In this study, the performances in real-time water quality forecasting based on different deep learning (DL) models with different input data pre-processing methods were compared. There were three popular DL models concerned, including the convolutional neural network (CNN), long short-term memory neural network (LSTM), and hybrid CNN–LSTM. Two types of input data were applied, including the original one-dimensional time series and the two-dimensional grey image based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) decomposition. Each type of input data was used in each DL model to forecast the real-time monitoring water quality parameters of dissolved oxygen (DO) and total nitrogen (TN). The results showed that (1) the performances of CNN–LSTM were superior to the standalone model CNN and LSTM; (2) the models used CEEMDAN-based input data performed much better than the models used the original input data, while the improvements for non-periodic parameter TN were much greater than that for periodic parameter DO; and (3) the model accuracies gradually decreased with the increase of prediction steps, while the original input data decayed faster than the CEEMDAN-based input data and the non-periodic parameter TN decayed faster than the periodic parameter DO. Overall, the input data preprocessed by the CEEMDAN method could effectively improve the forecasting performances of deep learning models, and this improvement was especially significant for non-periodic parameters of TN.


2020 ◽  
Vol 11 (2) ◽  
pp. 9285-9295 ◽  

The importance of good water quality for human use and consumption can never be underestimated, and its quality is determined through effective monitoring of the water quality index. Different approaches have been employed in the treatment and monitoring of water quality parameters (WQP). Presently, water quality is carried out through laboratory experiments, which requires costly reagents, skilled labor, and consumes time. Thereby making it necessary to search for an alternative method. Recently, machine learning tools have been successfully implemented in the monitoring, estimation, and predictions of river water quality index to provide an alternative solution to the limitations of laboratory analytical methods. In this study, the potentials of one of the machine learning tools (artificial neural network) were explored in the predictions and estimation of the Kelantan River basin. Water quality data collected from the 14 stations of the River basin was used for modeling and predicting (WQP). As for WQP analysis, the results obtained from this study show that the best prediction was obtained from the prediction of pH. The low kurtosis values of pH indicate that the appearance of outliers give a negative impact on the performance. As for WQP analysis for each station, we found that the WQP prediction in station 1, 2, and 3 give the good results. This is related to the available data of those stations that are more than the available data in other stations, except station 8.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Chen ◽  
Xiao Hao ◽  
JianRong Lu ◽  
Kui Yan ◽  
Jin Liu ◽  
...  

In order to solve the problems of high labor cost, long detection period, and low degree of information in current water environment monitoring, this paper proposes a lake water environment monitoring system based on LoRa and Internet of Things technology. The system realizes remote collection, data storage, dynamic monitoring, and pollution alarm for the distributed deployment of multisensor node information (water temperature, pH, turbidity, conductivity, and other water quality parameters). Moreover, the system uses STM32L151C8T6 microprocessor and multiple types of water quality sensors to collect water quality parameters in real time, and the data is packaged and sent to the LoRa gateway remotely by LoRa technology. Then, the gateway completes the bridging of LoRa link to IP link and forwards the water quality information to the Alibaba Cloud server. Finally, end users can realize the water quality control of monitored water area by monitoring management platform. The experimental results show that the system has a good performance in terms of real-time data acquisition accuracy, data transmission reliability, and pollution alarm success rate. The average relative errors of water temperature, pH, turbidity, and conductivity are 0.31%, 0.28%, 3.96%, and 0.71%, respectively. In addition, the signal reception strength of the system within 2 km is better than -81 dBm, and the average packet loss rate is only 94%. In short, the system’s high accuracy, high reliability, and long distance characteristics meet the needs of large area water quality monitoring.


2020 ◽  
Vol 42 (5) ◽  
pp. 1841-1866
Author(s):  
Hongwei Guo ◽  
Jinhui Jeanne Huang ◽  
Bowen Chen ◽  
Xiaolong Guo ◽  
Vijay P. Singh

2011 ◽  
Vol 383-390 ◽  
pp. 213-217 ◽  
Author(s):  
Guang Jian Chen ◽  
Jin Ling Jia

To implement the remote and real-time monitoring of surface water pollution, a design scheme of water quality monitoring system based on GPRS technology is put forward, which is composed of monitoring terminal, monitoring center and communication network. The various parameters of surface water are acquired using water quality detection sensor terminal and uploaded to the remote monitoring center via GPRS module by monitoring, and then the water quality parameters acquisition, processing and wireless transmission are realized. Water quality parameters are received through the internet network by the monitoring center, to realize its remote monitoring and management. According to the practice result, the system has materialized functions on GPRS service platform, such as real-time water quality parameters acquisition, procession, wireless transmission, remote monitoring and management, which is suitable for surface water pollution continuous monitoring and has the good application in the future.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Qi Cao ◽  
Gongliang Yu ◽  
Shengjie Sun ◽  
Yong Dou ◽  
Hua Li ◽  
...  

The Haihe River is a typical sluice-controlled river in the north of China. The construction and operation of sluice dams change the flow and other hydrological factors of rivers, which have adverse effects on water, making it difficult to study the characteristics of water quality change and water environment control in northern rivers. In recent years, remote sensing has been widely used in water quality monitoring. However, due to the low signal-to-noise ratio (SNR) and the limitation of instrument resolution, satellite remote sensing is still a challenge to inland water quality monitoring. Ground-based hyperspectral remote sensing has a high temporal-spatial resolution and can be simply fixed in the water edge to achieve real-time continuous detection. A combination of hyperspectral remote sensing devices and BP neural networks is used in the current research to invert water quality parameters. The measured values and remote sensing reflectance of eight water quality parameters (chlorophyll-a (Chl-a), phycocyanin (PC), total suspended sediments (TSS), total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH4-N), nitrate-nitrogen (NO3-N), and pH) were modeled and verified. The results show that the performance R2 of the training model is above 80%, and the performance R2 of the verification model is above 70%. In the training model, the highest fitting degree is TN (R2 = 1, RMSE = 0.0012 mg/L), and the lowest fitting degree is PC (R2 = 0.87, RMSE = 0.0011 mg/L). Therefore, the application of hyperspectral remote sensing technology to water quality detection in the Haihe River is a feasible method. The model built in the hyperspectral remote sensing equipment can help decision-makers to easily understand the real-time changes of water quality parameters.


Sign in / Sign up

Export Citation Format

Share Document