scholarly journals Geochemical characteristics of trace elements in size-resolved coastal urban aerosols associated with distinct air masses over tropical peninsular India: Size distributions and source apportionment

Author(s):  
Suresh K.R. Boreddy ◽  
Prashant Hegde ◽  
A.R. Aswini
2016 ◽  
Author(s):  
Zhaolian Ye ◽  
Jiashu Liu ◽  
Aijun Gu ◽  
Feifei Feng ◽  
Yuhai Liu ◽  
...  

Abstract. Knowledge on aerosol chemistry in densely populated regions is critical for reduction of air pollution, while such studies haven't been conducted in Changzhou, an important manufacturing base and polluted city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particular matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in Changzhou city. A suite of analytical techniques were employed to characterize organic carbon / elemental carbon (OC / EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosols (WSOA). The average PM2.5 concentrations were found to be 108.3 μg m−3, and all identified species were able to reconstruct ~ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (~ 52.1 %), with SO42−, NO3− and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating influences from traffic emissions. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondarily formed and primarily emitted OA. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to 6.0 % of PM2.5 during winter. PAHs concentrations were also high in winter (140.25 ng m−3), which were predominated by median/high molecular weight PAHs with 5- and 6-rings. The organic matter including both water-soluble and water-insoluble species occupied ~ 20 % PM2.5 mass. SP-AMS determined that the WSOA had an average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C) and organic matter-to-organic carbon (OM / OC) ratios of 0.36, 1.54, 0.11, and 1.74, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized OA) and two primary OA (POA) factors (a nitrogen enriched hydrocarbon-like traffic OA and a cooking-related OA). On average, the POA contribution overweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions to the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.


1993 ◽  
Vol 27 (17-18) ◽  
pp. 2803-2814 ◽  
Author(s):  
J.-L. Jaffrezo ◽  
R.E. Hillamo ◽  
C.I. Davidson ◽  
W. Maenhaut

2008 ◽  
Vol 8 (22) ◽  
pp. 6729-6738 ◽  
Author(s):  
N. Kalivitis ◽  
W. Birmili ◽  
M. Stock ◽  
B. Wehner ◽  
A. Massling ◽  
...  

Abstract. Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.


2008 ◽  
Vol 8 (2) ◽  
pp. 6571-6601
Author(s):  
N. Kalivitis ◽  
W. Birmili ◽  
M. Stock ◽  
B. Wehner ◽  
A. Massling ◽  
...  

Abstract. Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.


Sign in / Sign up

Export Citation Format

Share Document