scholarly journals Pollen biology and hormesis: Pollen germination and pollen tube elongation

Author(s):  
Edward J. Calabrese ◽  
Evgenios Agathokleous
2017 ◽  
Vol 32 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Natalia Georgieva ◽  
Ivelina Nikolova ◽  
Valentin Kosev ◽  
Yordanka Naydenova

The objective of this study was to evaluate the influence of two organic nanofertilizers, Lithovit and Nagro, on in vitro germination, pollen tube elongation and pollen grain viability of Pisum sativum L cv. Pleven 4. The effect of their application was high and exceeded data for the untreated control (44.2 and 47.23 % regarding pollen germination and pollen tube elongation, respectively), as well as the effect of the control organic algal fertilizer Biofa (17.5 and 27.9 %, respectively). Pollen grains were inoculated in four culture media. A medium containing 15% sucrose and 1% agar had the most stimulating impact on pea pollen grains. Pollen viability, evaluated by staining with 1% carmine, was within limits of 74.72-87.97%. The highest viability of pollen grains was demonstrated after the application of Nagro organic nano-fertlizer.


2016 ◽  
Vol 64 (4) ◽  
pp. 302 ◽  
Author(s):  
Dolja Pavlova

In this work we studied and compared the toxic effect of nickel (Ni) on pollen germination and pollen tube length in Arabis alpina L. collected from serpentine and non-serpentine populations distributed in the Rila mountains, Bulgaria. Pollen grains were treated with prepared standard solutions of 100, 300, 500, and 700 μM Ni as NiCl2 in distilled water. A nutritional medium was also used to assess pollen germination. Nickel inhibited pollen germination and pollen tube elongation in both serpentine and non-serpentine plants. The percentage of germinated pollen in serpentine plants treated with Ni was higher than in non-serpentine plants but there was no difference in pollen tube elongation between groups. However, pollen tubes showed abnormalities such as coiling and swelling of the tip, or burst, and varied considerably among the samples. A complete break of pollen tube elongation is due to such abnormalities. Also, decreased pollen fertility in both populations was found. The plants from serpentines were less sensitive to (i.e. more tolerant of) elevated Ni concentrations commonly found in serpentine soils.


2015 ◽  
Vol 59 (4) ◽  
pp. 735-744 ◽  
Author(s):  
S. Pasqualini ◽  
M. Cresti ◽  
C. Casino ◽  
C. Faleri ◽  
G. Frenguelli ◽  
...  

2008 ◽  
Vol 3 (8) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
M. Castro Marilia De ◽  
Diego Demarco

The purpose of this brief review has been to provide more recent data regarding the production of phenolic compounds by secretory structures. Although morphology and histochemistry of glands are well documented, meagre information concerning phenolics is available in the surveyed literature. Two major groups of glands are found regarding phenolic compounds synthesis: 1. secretory cells producing mainly phenolics, 2. secretory cells producing phenolics coupled with other compounds. In the former group, phenolic compounds remain in mature organs, and prevail in the material produced by epidermis, hypodermis, idioblasts, and sheath encircling vascular bundles and ducts. The latter group is constituted of trichomes, cavities, ducts, laticifers, colleters, nuptial nectaries, osmophores and stigma system, which synthesize complex mixtures of terpenes, phenolic compounds, polysaccharides and other compounds. In vegetative organs, the secretion of these glands might provide chemical defence against damage by UV radiation, against pathogen activities, and play a role in the herbivory deterrence. Additional functions ascribed to phenolics produced by floral glands are associated with pollination, pollen germination and pollen-tube elongation.


2000 ◽  
Vol 80 (2) ◽  
pp. 241-245 ◽  
Author(s):  
Ergü Çetin ◽  
Cansev Yildirim ◽  
Narçin Palavan-Ünsal ◽  
Meral Ünal

Naturally occurring polyamines (PA) are known to play a key role in growth and development of plants and animals. However, the role of these polycations in the development and germination of the pollen grain is not well understood. The effect of different concentrations of spermine (Spm) on pollen tube growth in Helianthus annuus was investigated. Spermine treatments in the 10−7 to 10−5 M range stimulated pollen tube growth starting in the first 15 min of the incubation period, while 10−4 M Spm treatment resulted in inhibition of pollen tube elongation. The effect of cyclohexylamine (CHA), an inhibitor of Spm synthesis on pollen tube growth and germination percentage was also studied. Cyclohexylamine in the 0.5 × 10−3 M to the 1.5 × 10−3 M range inhibited pollen tube elongation. The relationship of B deficiency, excess B and PA effect on pollen germination and pollen tube growth were also investigated. Key words: Polyamines, pollen, cyclohexylamine, boron


Sign in / Sign up

Export Citation Format

Share Document