Variability of annual sediment load and runoff in the Yellow River for the last 100 years (1919–2018)

2021 ◽  
Vol 758 ◽  
pp. 143715
Author(s):  
Hong Wang ◽  
Fubao Sun
2018 ◽  
Vol 45 (1) ◽  
pp. 82-96 ◽  
Author(s):  
Fuqiang Li ◽  
Baotian Pan ◽  
Zhongping Lai ◽  
Hongshan Gao ◽  
Xianjiao Ou

Abstract The partial bleaching of the luminescence signal prior to deposition results in age overestimation, and can be a problem in delineating fluvial evolution within an OSL chronological framework. The Inner Mongolian reaches of the Yellow River are characterised by a high sediment load and complex sources of sediments. To test the incomplete bleaching occurring in this type of environment, the residual doses and the luminescence signal characteristics of different particle size fractions from 14 modern fluvial sediment samples were investigated. Furthermore, 26 OSL ages derived from drilling cores were compared with 11 radiocarbon ages. Our results show that the residual equivalent doses principally range between 0.16 and 0.49 Gy for silt grains, and between 0.35 and 3.72 Gy for sand grains of modern samples. This suggests that medium-grained quartz has been well bleached prior to deposition, and is preferable to coarse-grained quartz when dating fluvial sediments in this region. The results also show that the De values of coarse-grained fractions display a stronger correlation with distance downstream. In addition, a comparison of OSL and radiocarbon ages from drilling cores establishes further confidence that any initial bleaching of these sediments was sufficient. As a result, we believe that the studied fluvial samples were well bleached prior to deposition.


2020 ◽  
Author(s):  
Qiao Shuqing ◽  
Shi Xuefa ◽  
Yonggui Yu ◽  
Limin Hu ◽  
Lin Zhou ◽  
...  

<p>The fluvial sediment to the sea is the base of coastal geomorphology and biogeochemical processes, and its transport is an important pathway to the global biogeochemical cycle. The Yellow River is one of globally well-known large rivers because of high sediment load and Chinese Mother River. Its channel shifts frequently because of high sediment load and steep river-channel gradient in the lower reaches . The terminal channel has shifted more than 50 times since 1855 and the last two changes in 1976 and 1996. Furthermore, Yellow River Conservancy Commission has began to implement Water-Sediment Regulation Scheme (WSRS) since 2002, to increase the main channel discharge capacity and to reduce deposition in the reservoirs and river channel. Surface sediment, multi-core and gravity sediment cores, remote sensing images and bathymetric data near the Yellow River delta were collected to study the impact of WSRS and river terminal change together with the water and sediment discharge at the gauging station. Especially, <sup>7</sup>Be, <sup>210</sup>Pb and <sup>137</sup>Cs, grain size, sediment color and TOC/TN was measured to show sedimentary record of WSRS and channel shift on inter-and intra-annual time scale. The results show that the fresh sediment from Yellow River  during 2014 WSRS period can be transported eastward more than 80 km off the rivermouth, while cannot pass 38° easily. Meanwhile the sediment can penetrate as deep as 12 cm. The subaerial delta area is mostly stable after 2002, and its balance is mainly controlled by the surrounding artificial coastline. The subaqueous delta changed from trapping about 4.6×10<sup>8</sup> t to being eroded ~ 3.1×10<sup>8</sup> t and 1.1×10<sup>8</sup> t each year during the three stages of 1976-1996, 1996-2002 and 2002-2014. It is proposed that the subaerial delta area will change little except for the Q8 outlet area, while the subaqueous delta evolution mostly depend on the Huanghe material besides the hydrodynamic conditions. In addition, the aim of WSRS to scour the lower riverbed will recede in future. This study deepens our understanding of the fluvial sediment disperse pattern and sedimentation under the influence of human activities and hydrodynamic conditions.</p><div>Acknowledgements</div><div> <div>This study was supported by National Programme on Global Change and Air-Sea Interaction (GASI-GEOGE-03) and the Natural Science Foundation of China (U1606401).</div> </div>


2017 ◽  
Vol 32 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Hongling Shi ◽  
Chunhong Hu ◽  
Yangui Wang ◽  
Cheng Liu ◽  
Huimei Li

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2589
Author(s):  
Xiujie Wang ◽  
Dandan Li ◽  
Ximin Yuan ◽  
Xiling Qi ◽  
Pengfei Zhang

To understand the intricate runoff-sediment relationship in the middle Yellow River basin (MYRB), the Toudaoguai, Longmen, Tongguan and Huayuankou sites in the MYRB were selected to analyze the deterministic equilibrium and uncertainty relations of runoff-sediment based on 55-year hydrological data at multi-time scales. The Johansen test and wavelet neural network were used to verify the cointegration relationship among hydrological series. Runoff-sediment uncertain statistical relations and dynamics in the MYRB were also analyzed based on rating curves and hysteresis loops. The results showed that the logarithmic sequences of sediment load (SL), runoff and suspended sediment concentration (SSC) conformed to a linear cointegration relationship at the Toudaoguai station or in spring, winter or under small flow at other stations, but a nonlinear cointegration relationship was observed in other cases at other stations. Regarding runoff-sediment uncertain relationships, the rating curves, and hysteresis loops differed in stations (Toudaoguai and the other stations), as well as discharge (threshold: 1000 m3/s), season (ice-flood and rainy season) and saturation of flow at flood and monthly scales. At the annual scale, phased and unsynchronized characteristics of runoff and sediment load were evident with a decreasing trend. This study on the runoff-sediment relationship can rationally provide a theoretical basis for the management and development of the Yellow River and other similar rivers with sufficient sediment, especially for areas with serious soil erosion.


2016 ◽  
Vol 31 (7) ◽  
pp. 1791-1803 ◽  
Author(s):  
Erhui Li ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
Wenyi Sun

Sign in / Sign up

Export Citation Format

Share Document