Pollution effect assessment of industrial activities on potentially toxic metal distribution in windowsill dust and surface soil in central China

2021 ◽  
Vol 759 ◽  
pp. 144023
Author(s):  
Qiao Han ◽  
Yang Liu ◽  
Xixi Feng ◽  
Pan Mao ◽  
Ang Sun ◽  
...  
2018 ◽  
Vol 10 (4) ◽  
pp. 653-662 ◽  
Author(s):  
Mingxin Zhang ◽  
Xinwei Lu ◽  
Dongqi Shi ◽  
Huiyun Pan

2018 ◽  
Vol 19 (5) ◽  
pp. 831-847 ◽  
Author(s):  
Binghao Jia ◽  
Jianguo Liu ◽  
Zhenghui Xie ◽  
Chunxiang Shi

Abstract In this study, a microwave-based multisatellite merged product released from the European Space Agency’s Climate Change Initiative (ESA CCI) and two model-based simulations from the Community Land Model 4.5 (CLM4.5) and Global Land Data Assimilation System (GLDAS) were used to investigate interannual variations and trends of soil moisture in China between 1979 and 2010. They were also evaluated using in situ observations from the nationwide agrometeorological network. These three datasets show consistent drying trends for surface soil moisture in northeastern and central China, as well the eastern portion of Inner Mongolia, and wetting trends in the Tibetan Plateau, which are also identified by in situ observations. Trends in the root-zone soil moisture are in line with those of surface soil moisture seen in the CLM4.5 and GLDAS simulations obtained from most areas in China (78%–88%), except for northwestern China and southwest of the Tibetan Plateau. Moreover, the drying trend intensifies with increasing soil depth. Taking the in situ measurements as reference, it is found that ESA CCI has better accuracy in identifying the significant drying trends while CLM4.5 and GLDAS capture wetting trends better. Compared to temperature, precipitation is the primary factor responsible for these trends, which controls the direction of soil moisture changes, while increasing temperatures can also enhance soil drying during periods of decreased precipitation.


Author(s):  
Werner J. Niklowitz

After intoxication of rabbits with certain substances such as convulsant agents (3-acetylpyridine), centrally acting drugs (reserpine), or toxic metal compounds (tetraethyl lead) a significant observation by phase microscope is the loss of contrast of the hippocampal mossy fiber layer. It has been suggested that this alteration, as well as changes seen with the electron microscope in the hippocampal mossy fiber boutons, may be related to a loss of neurotransmitters. The purpose of these experiments was to apply the OsO4-zinc-iodide staining technique to the study of these structural changes since it has been suggested that OsO4-zinc-iodide stain reacts with neurotransmitters (acetylcholine, catecholamines).Domestic New Zealand rabbits (2.5 to 3 kg) were used. Hippocampal tissue was removed from normal and experimental animals treated with 3-acetylpyridine (antimetabolite of nicotinamide), reserpine (anti- hypertensive/tranquilizer), or iproniazid (antidepressant/monamine oxidase inhibitor). After fixation in glutaraldehyde hippocampal tissue was treated with OsO4-zinc-iodide stain and further processed for phase and electron microscope studies.


Author(s):  
Hongrong Shi ◽  
Jinqiang Zhang ◽  
Bin Zhao ◽  
Xiangao Xia ◽  
Bo Hu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document