Compositions, sources, and potential health risks of volatile organic compounds in the heavily polluted rural North China Plain during the heating season

Author(s):  
Guangzhao Xie ◽  
Hui Chen ◽  
Fei Zhang ◽  
Xiaona Shang ◽  
Bixin Zhan ◽  
...  
2012 ◽  
Vol 111 ◽  
pp. 46-57 ◽  
Author(s):  
Jeeranut Suthawaree ◽  
Shungo Kato ◽  
Pakpong Pochanart ◽  
Yugo Kanaya ◽  
Hajime Akimoto ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1365
Author(s):  
Kun He ◽  
Zhenxing Shen ◽  
Jian Sun ◽  
Yali Lei ◽  
Yue Zhang ◽  
...  

The profiles, contributions to ozone formation, and associated health risks of 56 volatile organic compounds (VOCs) species were investigated using high time resolution observations from photochemical assessment monitoring stations (PAMs) in Luoyang, China. The daily averaged concentration of total VOCs (TVOCs) was 21.66 ± 10.34 ppbv in urban areas, 14.45 ± 7.40 ppbv in suburbs, and 37.58 ± 13.99 ppbv in an industrial zone. Overall, the VOCs levels in these nine sites followed a decreasing sequence of alkanes > aromatics > alkenes > alkyne. Diurnal variations in VOCs exhibited two peaks at 8:00–9:00 and 19:00–20:00, with one valley at 23:00–24:00. Source apportionment indicated that vehicle and industrial emissions were the dominant sources of VOCs in urban and suburban sites. The industrial site displayed extreme levels, with contributions from petrochemical-related sources of up to 38.3%. Alkenes and aromatics displayed the highest ozone formation potentials because of their high photochemical reactivity. Cancer and noncancer risks in the industrial site were higher than those in the urban and suburban areas, and USEPA possible risk thresholds were reached in the industrial site, indicating PAMs VOC–related health problems cannot be ignored. Therefore, vehicle and industrial emissions should be prioritized when considering VOCs and O3 control strategies in Luoyang.


2020 ◽  
Vol 19 (1) ◽  
pp. 43-56
Author(s):  
Veerapas Na Roi-et ◽  
◽  
Supawat Chaikasem ◽  

Emission of volatile organic compounds (VOCs) from photocopiers was investigated to assess the potential health impacts on inhalation exposure to VOCs. VOCs samples were collected during working hours using SKC VOCs 575 series passive sample. Twenty-one quantified VOCs were measured and analyzed by GC-MS/MS. The results showed that the total VOCs concentration emitted in the photocopy centers A and B were 2.29×104 and 2.32×104 µg/m3, respectively. The highest detected chemical was trans-1,2-Dichloroethene at about 2.18×104 (photocopy center A) and 2.15×104 µg/m3 (photocopy center B (The results reveal that the non-carcinogenic risk for inhalation exposure to m-Xylene, p-Xylene, and trans-1,2-Dichloroethene were in the range 0.94-1.53 and 1.19-1.79 and 51.54-52.23, respectively, resulting in the hazard index (HI) of non-carcinogenic VOCs in total being greater than 1.0. This indicated that the cumulative effects of inhalation exposure to VOCs at low concentrations should be of concern, even though it does not exceed the occupational exposure limits and Threshold Limit Values-Time Weighted Average for the mixtures (TLV-TWAmix). Plants display a greener solution to reduce indoor air pollution. The bio-concentration levels of total VOCs in Epipremnum aureum were noted as 74.71 to 174.42, signifying that E. aureum is effective for removal of VOCs naturally and sustainably.


Sign in / Sign up

Export Citation Format

Share Document