Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the north China plain

2019 ◽  
Vol 207 ◽  
pp. 167-181 ◽  
Author(s):  
Congbo Song ◽  
Baoshuang Liu ◽  
Qili Dai ◽  
Huairui Li ◽  
Hongjun Mao
2020 ◽  
Author(s):  
Jiarui Wu ◽  
Naifang Bei ◽  
Yuan Wang ◽  
Xia Li ◽  
Suixin Liu ◽  
...  

Abstract. Accurate identification and quantitative source apportionment of fine particulate matters (PM2.5) provide an important prerequisite for design and implementation of emission control strategies to reduce PM pollution. Therefore, a source-oriented version of the WRF-Chem model is developed in the study to make source apportionment of PM2.5 in the North China Plain (NCP). A persistent and heavy haze event occurred in the NCP from 05 December 2015 to 04 January 2016 is simulated using the model as a case study to quantify PM2.5 contributions of local emissions and regional transport. Results show that local and non-local emissions contribute 36.3 % and 63.7 % of the PM2.5 mass in Beijing during the haze event on average. When Beijing's air quality is excellent or good in terms of hourly PM2.5 concentrations, local emissions dominate the PM2.5 mass with contributions exceeding 50 %. However, when the air quality is severely polluted, the PM2.5 contribution of non-local emissions is around 75 %. The non-local emissions also dominate the Tianjin's air quality, with average PM2.5 contributions exceeding 70 %. The PM2.5 level in Hebei and Shandong is generally controlled by local emissions, but in Henan, local and non-local emissions play an almost equivalent role in the PM2.5 level, except when the air quality is severely polluted, with non-local PM2.5 contributions of over 60 %. Additionally, the primary aerosol species are generally dominated by local emissions with the average contribution exceeding 50%. However, the source apportionment of secondary aerosols shows more evident regional characteristics. Therefore, except cooperation with neighboring provinces to carry out strict emission mitigation measures, reducing primary aerosols constitutes the priority to alleviate PM pollution in the NCP, especially in Beijing and Tianjin.


2019 ◽  
Vol 19 (20) ◽  
pp. 12857-12874 ◽  
Author(s):  
Renmin Yuan ◽  
Xiaoye Zhang ◽  
Hao Liu ◽  
Yu Gui ◽  
Bohao Shao ◽  
...  

Abstract. Due to excessive anthropogenic emissions, heavy aerosol pollution episodes (HPEs) often occur during winter in the Beijing–Tianjin–Hebei (BTH) area of the North China Plain. Extensive observational studies have been carried out to understand the causes of HPEs; however, few measurements of vertical aerosol fluxes exist, despite them being the key to understanding vertical aerosol mixing, specifically during weak turbulence stages in HPEs. In the winter of 2016 and the spring of 2017 aerosol vertical mass fluxes were measured by combining large aperture scintillometer (LAS) observations, surface PM2.5 and PM10 mass concentrations, and meteorological observations, including temperature, relative humidity (RH), and visibility, at a rural site in Gucheng (GC), Hebei Province, and an urban site at the Chinese Academy of Meteorological Sciences (CAMS) in Beijing located 100 km to the northeast. These are based on the light propagation theory and surface-layer similarity theory. The near-ground aerosol mass flux was generally lower in winter than in spring and weaker in rural GC than in urban Beijing. This finding provides direct observational evidence for a weakened turbulence intensity and low vertical aerosol fluxes in winter and polluted areas such as GC. The HPEs included a transport stage (TS), an accumulative stage (AS), and a removal stage (RS). During the HPEs from 25 to 31 January 2017, in Beijing, the mean mass flux decreased by 51 % from 0.0049 mg m−2 s−1 in RSs to 0.0024 mg m−2 s−1 in the TSs. During the ASs, the mean mass flux decreased further to 0.00087 mg m−2 s−1, accounting for approximately one-third of the flux in the TSs. A similar reduction from the TSs to ASs was observed in the HPE from 16 to 22 December 2016 in GC. It can be seen that from the TS to the AS, the aerosol vertical turbulent flux decreased, but the aerosol particle concentration within the surface layer increased, and it is inferred that in addition to the contribution of regional transport from upwind areas during the TS, suppression of vertical turbulence mixing confining aerosols to a shallow boundary layer increased accumulation.


2012 ◽  
Vol 111 ◽  
pp. 46-57 ◽  
Author(s):  
Jeeranut Suthawaree ◽  
Shungo Kato ◽  
Pakpong Pochanart ◽  
Yugo Kanaya ◽  
Hajime Akimoto ◽  
...  

2013 ◽  
Vol 13 (16) ◽  
pp. 8285-8302 ◽  
Author(s):  
K. Kawamura ◽  
E. Tachibana ◽  
K. Okuzawa ◽  
S. G. Aggarwal ◽  
Y. Kanaya ◽  
...  

Abstract. Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220–6070 ng m−3) were characterized by a predominance of oxalic (C2) acid (105–3920 ng m−3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24–610 ng m−3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11–360 ng m−3), followed by α-ketoacid (pyruvic acid, 3–140 ng m−3) and α-dicarbonyls (glyoxal, 1–230 ng m−3 and methylglyoxal, 2–120 ng m−3). We found that these levels (>6000 ng m−3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8–11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning as well as dark ozonolysis of volatile organic compounds and other organics, accretion reactions and oxidation of nonvolatile organics such as unsaturated fatty acids. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.


Sign in / Sign up

Export Citation Format

Share Document