Volatile sulfur compound emissions and health risk assessment from an A2/O wastewater treatment plant

Author(s):  
Ruoyu Li ◽  
Zhangliang Han ◽  
Hanzhang Shen ◽  
Fei Qi ◽  
Dezhi Sun
2020 ◽  
Vol 82 (8) ◽  
pp. 1547-1559
Author(s):  
Pengcheng Xu ◽  
Chongmiao Zhang ◽  
Xiao Mou ◽  
Xiaochang C. Wang

Abstract An investigation on bioaerosol in a wastewater treatment plant (WWTP) located in Xi'an, China, was conducted to understand the characteristics of bioaerosol released from wastewater and sludge treatment facilities because the bioaerosols may pose a threat to human health. Using the Andersen impactor sampler collection and colony-counting method, bioaerosol concentrations and size distributions were detected. The risk quotient method was used to evaluate the health risks associated with inhalation of bioaerosol for WWTP staff, based on the average daily dose rates of exposure. The health risk in relation to Legionella pneumophila was quantitatively calculated using quantitative microbial risk assessment (QMRA), based on the assumption of the percentage. The maximum concentration of airborne bacteria (3,767 ± 280 colony forming units (CFU)/m3) and fungi (8,775 ± 406 CFU/m3) occurred from the aerated grit chamber and sludge thickening house, respectively, which all exceeded 500 CFU/m3 as the acceptable guideline proposed by the American Conference of Governmental Industrial Hygienists. The particle size of airborne bacteria was mainly distributed in the first three stages (>3.3 µm), while that of airborne fungi was from the second to the fourth stage (2.1–7.0 µm). The hazard index exposure to bioaerosol for adult males and females by inhalation were higher than 1. The proportion of L. pneumophila should be strictly controlled below 10−8, based on the QMRA approach.


2021 ◽  
Author(s):  
Jia-xin Ma ◽  
Bei-bei Cui ◽  
Man-li Liu ◽  
Jie Yuan ◽  
Cheng Yan

Abstract Biological treatment in wastewater treatment plants (WWTPs) releases high amounts of bioaerosols carrying a variety of pathogens. Quantitative microbial risk assessment (QMRA) is a framework prevalently intended for the quantitative estimation of health risks for occupational exposure scenarios (e.g. in WWTPs). However, the quantitative contributions of health-risk-estimate inputted variable parameters remain ambiguous. Therefore, this research aimed to study the disease burden of workers exposed to Staphylococcus aureus bioaerosol during warm and cold periods and to strictly quantify the contributions of the inputted parameters of disease burden by sensitivity analysis based on Monte Carlo simulation. The results showed that the disease health risk burden in the warm period was higher than in the cold period, disease health risk burden in the rotating-disc aeration mode was regularly higher than in the microporous aeration mode. The disease health risk burden of the workers with personal protective equipment (PPE) almost all satisfied the WHO benchmark (≤10E-6 DALYs pppy), and was consistently lower by one or two orders of magnitude than the workers without PPE in both warm and cold periods. Referring to the sensitivity analysis, exposure concentration and aerosol ingestion rate were the most and second predominant factor for the estimated risk in all exposure scenarios, respectively. The sensitivity of the removal fraction by employing PPE ranked third in the contribution to disease health risk burden. In addition, no remarkable differences were revealed in the sensitivity percentage ratio between warm and cold periods. This research can deepen the understanding of the QMRA framework and promote the development of sensitivity analysis, especially under various meteorological conditions (warm and cold periods).


Sign in / Sign up

Export Citation Format

Share Document