Presence of powdered activated carbon/zeolite layer on the performances of gravity-driven membrane (GDM) system for drinking water treatment: Ammonia removal and flux stabilization

Author(s):  
An Ding ◽  
Ruilin Song ◽  
Hao Cui ◽  
Haiyan Cao ◽  
Huu Hao Ngo ◽  
...  
2009 ◽  
Vol 2 (1) ◽  
pp. 79-100 ◽  
Author(s):  
J. Chung ◽  
Y. Yoon ◽  
M. Kim ◽  
S.-B. Lee ◽  
H.-J. Kim ◽  
...  

Abstract. The presence of N-nitrosodimethylamine (NDMA) in drinking water supplies has raised concern over its removal by common drinking water treatment processes. A simple detection method based on scintillation spectroscopy has been used to quantify the concentration of 14C-labeled NDMA at various ratios of sample to scintillation liquid. Without sample pretreatment, the method detection limits are 0.91, 0.98, 1.23, and 1.45 ng/L of NDMA at scintillation intensity ratios of 10:10, 5:15, 15:5, and 2.5:17.5 (sample: scintillation liquid), respectively. The scintillation intensity in all cases is linear (R2>0.99) and is in the range of 0 to 100 ng/L of NDMA. In addition, because scintillation intensity is independent of solution pH, conductivity, and background electrolyte ion types, a separate calibration curve is unnecessary for NDMA samples at different solution conditions. Bench-scale experiments were performed to simulate individual treatment processes, which include coagulation and adsorption by powdered activated carbon (PAC), as used in a drinking water treatment plant, and biosorption, a technique used in biological treatment of waste water. The commonly used coagulation process for particulate control and biosorption is ineffective for removing NDMA (<10% by coagulation and <20% by biosorption). However, high doses of PAC may be applied to remove NDMA.


Chemosphere ◽  
2016 ◽  
Vol 156 ◽  
pp. 374-382 ◽  
Author(s):  
Jianwei Yu ◽  
Fong-Chen Yang ◽  
Wei-Nung Hung ◽  
Chia-Ling Liu ◽  
Min Yang ◽  
...  

2008 ◽  
Vol 58 (5) ◽  
pp. 1129-1135 ◽  
Author(s):  
D. Simazaki ◽  
J. Fujiwara ◽  
S. Manabe ◽  
M. Matsuda ◽  
M. Asami ◽  
...  

Removal property of nine pharmaceuticals (clofibric acid, diclofenac, fenoprofen, gemfibrozil, ibuprofen, indomethacin, ketoprofen, naproxen and propyphenazone) by chlorination, coagulation–sedimentation and powdered activated carbon treatment was examined by laboratory-scale experiments under the conditions close to actual drinking water treatment processes. Indomethacin and propyphenazone were completely degraded by chlorination within 30 minutes, but others remained around 30% (naproxen and diclofenac) or more than 80% of the initial concentration after 24 hours. A couple of unidentified peaks in a chromatogram of the chlorinated samples suggested the formation of unknown chlorination by-products. Competitive adsorption was observed when the mixed solution of the target pharmaceuticals was subjected to batch adsorption test with powdered activated carbon. Clofibric acid and ibuprofen, which were relatively less hydrophobic among the nine compounds, persisted around 60% of the initial concentration after 3 hours of contact time. Removal performance in actual drinking water treatment would become lower due to existence of other competitive substances in raw water (e.g. natural organic matter). Coagulation–sedimentation using polyaluminium chloride hardly removed most of the pharmaceuticals even under its optimal dose for turbidity removal. It is suggested that the most part of pharmaceuticals in raw water might persist in the course of conventional drinking water treatments.


2009 ◽  
Vol 2 (2) ◽  
pp. 49-55 ◽  
Author(s):  
J. Chung ◽  
Y. Yoon ◽  
M. Kim ◽  
S.-B. Lee ◽  
H.-J. Kim ◽  
...  

Abstract. The presence of N-nitrosodimethylamine (NDMA) in drinking water supplies has raised concern over its removal by common drinking water treatment processes. However, only limited studies have been examined to evaluate the potential removal of NDMA by numerous water treatment technologies within a realistic range (i.e., sub μg/L) of NDMA levels in natural water due to analytical availability. In this study, a simple detection method based on scintillation spectroscopy has been used to quantify the concentration of 14C-labeled NDMA at various ratios of sample to scintillation liquid. Without sample pretreatment, the method detection limits are 0.91, 0.98, 1.23, and 1.45 ng/L of NDMA at scintillation intensity ratios of 10:10, 5:15, 15:5, and 2.5:17.5 (sample: scintillation liquid), respectively. The scintillation intensity in all cases is linear (R2>0.99) and is in the range of 0 to 100 ng/L of NDMA. In addition, because scintillation intensity is independent of solution pH, conductivity, and background electrolyte ion types, a separate calibration curve is unnecessary for NDMA samples at different solution conditions. Bench-scale experiments were performed to simulate individual treatment processes, which include coagulation and adsorption by powdered activated carbon (PAC), as used in a drinking water treatment plant, and biosorption, a technique used in biological treatment of waste water. The results show that coagulation and biosorption may not be appropriate mechanisms to remove NDMA (i.e., hydrophilic based on its low octanol-water partitioning coefficient, Log Kow=0.57). However, relatively high removal of NDMA (approximately 50%) was obtained by PAC at high PAC dosages and longer contact times.


Author(s):  
O.J.I. Kramer ◽  
C. van Schaik ◽  
P.D.R. Dacomba-Torres ◽  
P.J. de Moel ◽  
E.S. Boek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document