13C signatures of aerosol organic and elemental carbon from major combustion sources in China compared to worldwide estimates

Author(s):  
Peng Yao ◽  
Ru-Jin Huang ◽  
Haiyan Ni ◽  
Norbertas Kairys ◽  
Lu Yang ◽  
...  
Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
Author(s):  
Borgar Aamaas ◽  
Carl Egede Bøggild ◽  
Frode Stordal ◽  
Terje Berntsen ◽  
Kim Holmén ◽  
...  

2017 ◽  
Author(s):  
Thilina Jayarathne ◽  
Chelsea E. Stockwell ◽  
Prakash V. Bhave ◽  
Puppala S. Praveen ◽  
Chathurika M. Rathnayake ◽  
...  

Abstract. The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and a heating fire. Fuel-based emission factors (EF; with units of pollutant mass emitted per kg of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced draught zig-zag brick kiln, EFPM2.5 ranged 1–19 g kg−1 with major contributions from OC (7 %), sulfate expected to be in the form of sulfuric acid (31.9 %), and other chemicals not measured (e.g., particle bound water). For the clamp kiln, EFPM2.5 ranged 8–13 g kg−1, with major contributions from OC (63.2 %), sulfate (20.8 %), and ammonium (14.2 %). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4 ± 1.2 g kg−1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125 ± 23 g kg−1. Garbage burning emissions contained relatively high concentrations of polycyclic aromatic compounds (PAHs), triphenylbenzene, and heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and 3-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from 3-stone cooking fires (7.6–73 g kg−1), followed by traditional mud stoves (5.3–19.7 g kg−1), mud stoves with a chimney for exhaust (3.0–6.8 g kg−1), rocket stoves (1.5–7.2 g kg−1), induced-draught stoves (1.2–5.7 g kg−1), and the bhuse chulo stove (3.2 g kg−1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8 ± 1.3 g kg−1 to 0.71 ± 0.4 g kg−1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 496
Author(s):  
Aruã da Silva Leite ◽  
Jean-François Léon ◽  
Melina Macouin ◽  
Sonia Rousse ◽  
Ricardo Ivan Ferreira da Trindade ◽  
...  

The physico-chemical characteristics of particulate matter (PM) in African cities remain poorly known due to scarcity of observation networks. Magnetic parameters of PM are robust proxies for the emissions of Fe-bearing particles. This study reports the first magnetic investigation of PM2.5 (PM with aerodynamic size below 2.5 μm) in Africa performed on weekly PM2.5 filters collected in Abidjan (Ivory Coast) and Cotonou (Benin) between 2015 and 2017. The magnetic mineralogy is dominated by magnetite-like low coercivity minerals. Mass normalized SIRM are 1.65 × 10−2 A m2 kg−1 and 2.28 × 10−2 A m2 kg−1 for Abidjan and Cotonou respectively. Hard coercivity material (S-ratio = 0.96 and MDF = 33 mT) is observed during the dry dusty season. Wood burning emits less iron oxides by PM2.5 mass when compared to traffic sources. PM2.5 magnetic granulometry has a narrow range regardless of the site or season. The excellent correlation between the site-averaged element carbon concentrations and SIRM suggests that PM2.5 magnetic parameters are linked to primary particulate emission from combustion sources.


2021 ◽  
pp. 000370282110123
Author(s):  
Hemalaxmi Rajavelu ◽  
Nilesh J Vasa ◽  
Satyanarayanan Seshadri

A benchtop Laser-Induced Breakdown Spectroscopy (LIBS) is demonstrated to determine the elemental carbon content present in raw coal used for combustion in power plants. The spectral intensities of molecular CN and C2 emission are measured together with the atomic carbon (C) and other inorganic elements (Si, Fe, Mg, Al, Ca, Na, and K) in the LIBS spectrum of coal. The emission persistence time of C2 molecule emission is measured from the coal plasma generated by a nanosecond laser ablation with a wavelength of 266 nm in the Ar atmosphere. The emission persistence time of molecular C2 emission along with the spectral intensities of major ash elements (Fe, Si, Al, and Ca) and carbon emissions (atomic C, molecular CN, and C2) shows a better relationship with the carbon wt% of different coal samples. The calibration model to measure elemental carbon (wt%) is developed by combining the spectral characteristics (Spectral intensity) and the temporal characteristics (Emission persistence time of C2 molecule emission). The temporal characteristic studies combined with the spectroscopic data in the PLSR (Partial Least Square Regression) model has resulted in an improvement in the root mean square error of validation (RMSEV), and the relative standard deviation (RSD) is reduced from 10.86% to 4.12% and from 11.32% to 6.04%, respectively.


Sign in / Sign up

Export Citation Format

Share Document