element carbon
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1577
Author(s):  
Weiting Wu ◽  
Yabei Zhang ◽  
Lifeng Wang ◽  
Yu Zhou ◽  
Yamei Chen ◽  
...  

Forest litter is the main contributor to soil fertility and the main carrier of circulating material and energy in forest ecosystems. Abies faxoniana (Minjiang fir) is one of the dominant species in alpine forest ecosystems. Its litter input plays important roles in soil organic matter formation and biogeochemical cycles in these ecosystems, but the annual litterfall pattern and its components remain largely unknown. To determine the litter input and nutrient return of A. faxoniana, we measured the litterfall and element (carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), aluminium (Al), iron (Fe), and manganese (Mn)) contents of different litter components (branches, leaves and epiphytes) from 2016 to 2020. The results showed that the annual litterfall in the A. faxoniana forest ranged from 2055.96 to 5384.15 kg·ha−1·a−1, and the average mass proportions of branches, leaves and epiphytes were 30.12%, 62.18% and 7.7%, respectively. The litterfall yield varied significantly with time and component; not only was the yield of litter in the nongrowing season higher than that in the growing season, but it also exhibited dramatic interannual variations. We also found that time had significant effects on the contents of all elements except for Ca in the litter. The return and input amounts of each element followed the same dynamics, which closely resembled a bimodal pattern. Moreover, there was significant interannual variability in the returned amounts of each element. The ranges of annual returns of C, N and P were 744.80~2275.12, 19.80~59.00 and 1.03~2.81 kg·ha−1·a−1, respectively. The ranges of annual returns of K, Ca, Na, Mg, Al, Fe and Mn were 0.91~2.00, 7.04~18.88, 0.13~0.58, 0.33~1.20, 0.55~2.29, 0.41~1.37 and 0.16~0.48 kg·ha−1·a−1, respectively, reflecting a seasonal double-peak pattern. These results have important implications for understanding the biogeochemical cycles and material migration processes in alpine forest ecosystems.


2021 ◽  
Vol 19 (5) ◽  
pp. 35-42
Author(s):  
Abdullah A. Abdullah

The element carbon Carbon dioxide emissions are increasing primarily as a result of people's use of fossil fuels for electricity. Coal and oil are fossil fuels that contain carbon that plants removed from the atmosphere by photosynthesis over millions of years; and in just a few hundred years we've returned carbon to the atmosphere. The element carbon Carbon dioxide concentrations rise primarily as a result of the burning of fossil fuels and Freon for electricity. Fossil fuels such as coal, oil and gas produce carbon plants that were photosynthesized from the atmosphere over many years, since in just two centuries, carbon was returned to the atmosphere. Climate alter could be a noteworthy time variety in weather designs happening over periods ranging from decades to millions of a long time. The permanent change in climatic conditions, or in the time period of long-term natural conditions, indicates irregularity in climatic conditions. Discuss toxins are pollutants that have an adverse impact on the ecosystem through interferometry's with the climatic environment, plant physiology, creature organisms, complete biological systems and human property in the form of agricultural or human crops. We list the best climate to represent the fact that global climate change has been identified as one of the major environmental problems facing humanity in the 21st century. In this context, the list of "classic" poisons must be included alongside substances such as oxides of nitrogen or sulfide. Certain environment limiting agents – the most crucial of them being carbon dioxide – which otherwise do not damage life formations. On the other hand, climate research has linked some compounds that have long been known to discuss toxin (occasionally dark CO2) with the warming of the climate.


Author(s):  
Wilhelm Frohs ◽  
Hubert Jäger
Keyword(s):  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 496
Author(s):  
Aruã da Silva Leite ◽  
Jean-François Léon ◽  
Melina Macouin ◽  
Sonia Rousse ◽  
Ricardo Ivan Ferreira da Trindade ◽  
...  

The physico-chemical characteristics of particulate matter (PM) in African cities remain poorly known due to scarcity of observation networks. Magnetic parameters of PM are robust proxies for the emissions of Fe-bearing particles. This study reports the first magnetic investigation of PM2.5 (PM with aerodynamic size below 2.5 μm) in Africa performed on weekly PM2.5 filters collected in Abidjan (Ivory Coast) and Cotonou (Benin) between 2015 and 2017. The magnetic mineralogy is dominated by magnetite-like low coercivity minerals. Mass normalized SIRM are 1.65 × 10−2 A m2 kg−1 and 2.28 × 10−2 A m2 kg−1 for Abidjan and Cotonou respectively. Hard coercivity material (S-ratio = 0.96 and MDF = 33 mT) is observed during the dry dusty season. Wood burning emits less iron oxides by PM2.5 mass when compared to traffic sources. PM2.5 magnetic granulometry has a narrow range regardless of the site or season. The excellent correlation between the site-averaged element carbon concentrations and SIRM suggests that PM2.5 magnetic parameters are linked to primary particulate emission from combustion sources.


2021 ◽  
Vol 17 (1) ◽  
pp. 79-96
Author(s):  
Kåre Haugan ◽  
Anna Marie Holand

This study has addressed misconceptions and the learning process of chemical reactions. 14 student teachersperformed a written test consisting of 28 multiple choice questions and after participating in fivechemistry classes the students were interviewed individually focusing on misconceptions and experiencedlearning events. Several misconceptions and hindrances for the learning of chemical reactions were identified.Some of these are previously identified, but two were more surprising; Three out of 13 studentswere confused when switching between the terms chemical “reaction” and chemical “change”, a confusiongenerated by a chemistry textbook. In addition, one student mixed up the symbolic meaning of theletter “C” in NaCl to C for the element carbon. Another student learned the profound difference betweentwo states of a substance when the symbols (aq) and (l) were used to differ between “dissolved in water”and “liquid”. Finally, the students identified dialogue and laboratory work as important for their learningof chemical reactions.


2021 ◽  
Author(s):  
Jack Stacey ◽  
et al.

Geochemical data for dolomite and limestone (trace element, rare earth element, carbon and oxygen stable isotope, clumped oxygen isotope, noble gas, fluid inclusion and bulk rock XRD) of the Middle Cambrian Cathedral Formation, Southern Canadian Rocky Mountains.


2021 ◽  
Author(s):  
Jack Stacey ◽  
et al.

Geochemical data for dolomite and limestone (trace element, rare earth element, carbon and oxygen stable isotope, clumped oxygen isotope, noble gas, fluid inclusion and bulk rock XRD) of the Middle Cambrian Cathedral Formation, Southern Canadian Rocky Mountains.


2020 ◽  
Vol 4 (3) ◽  
pp. 117
Author(s):  
Chandreyee Manas Das ◽  
Lixing Kang ◽  
Guang Yang ◽  
Dan Tian ◽  
Ken-Tye Yong

The field of material science is continually evolving with first-class discoveries of new nanomaterials. The element carbon is ubiquitous in nature. Due to its valency, it can exist in various forms, also known as allotropes, like diamond, graphite, one-dimensional (1D) carbon nanotube (CNT), carbon fiber (CF) and two-dimensional (2D) graphene. Carbon nano fiber (CNF) is another such material that falls within the category of CF. With much smaller diameters (around hundreds of nanometers) and lengths in microns, CNFs have higher aspect (length to diameter) ratios than CNTs. Because of their unique properties like high electrical and thermal conductivity, CNFs can be applied to many matrices like elastomers, thermoplastics, ceramics and metals. Owing to their outstanding mechanical properties, they can be used as reinforcements that can enhance the tensile and compressive strain limits of the base material. Thus, in this short review, we take a look into the dexterous characteristics of CF and CNF, where they have been hybridized with different materials, and delve deeply into some of the recent applications and advancements of these hybrid fiber systems in the fields of sensing, tissue engineering and modification of renewable devices since favorable mechanical and electrical properties of the CFs and CNFs like high tensile strength and electrical conductivity lead to enhanced device performance.


The term “element” is typically used in two distinct senses. First it is taken to mean isolated simple substances such as the green gas chlorine or the yellow solid sulphur. In some languages, including English, it is also used to denote an underlying abstract concept that subsumes simple substances but possesses no properties as such. The allotropes and isotopes of carbon, for example, all represent elements in the sense of simple substances. However, the unique position for the element carbon in the periodic table refers to the abstract sense of “element.” The dual definition of elements proposed by the International Union for Pure and Applied Chemistry contrasts an abstract meaning and an operational one. Nevertheless, the philosophical aspects of this notion are not fully captured by the IUPAC definition, despite the fact that they were crucial for the construction of the periodic table. This pivotal chemical notion remains ambiguous and such ambiguity raises problems at the epistemic, logical, and educational levels. These aspects are discussed throughout the book, from different perspectives. This collective book provides an overview of the current state of the debate on the notion of chemical element. Its authors are historians of chemistry, philosophers of chemistry, and chemists with epistemological and educational concerns.


2020 ◽  
Vol 18 (4) ◽  
pp. 041-050
Author(s):  
Andrzej Szewczak

Modifications of polymer composites are one of the fastest developing fields of technology. Research is focused on two directions: obtaining new composites or modifying existing materials. The first group of tests uses methods for preparing new chemical formulas of polymers containing, as the main structural element: carbon (organic polymers) or silicon (inorganic polymers). In the second group, the research consists in seeking methods to modify the properties of polymers. In building construction, among the others types, the glues (adhesive polymers) are used. They are exerted to connect materials with different physical andmechanical properties. Under the influence of the factor initiating the crosslinking reaction (hardener or temperature), the polymers obtain a solid form. The strength of the glued joint depends on the initial parameters of the glue resin and the target substrate of its application.The glued surface is usually the weakest element in this connection in terms of the possibility of damage due to the effects of loads, therefore methods to improve the strength parameters of adhesives are sought. The study presents the results of own research on methods of modification of a selected epoxy resin used in the technique as a glue. In order to ensure effective mixing of the adhesive with the fillers, ultrasound energy was used. After the resin had hardened, tests were carried out to determine the hardness and tensile strength of the obtained composites. Based on the results, SEM analysis and observation of the effect of ultrasound, the phenomena affecting the changes in the above mechanical properties were explained.


Sign in / Sign up

Export Citation Format

Share Document