Effects of feeding a pine-based biochar to beef cattle on subsequent manure nutrients, organic matter composition and greenhouse gas emissions

Author(s):  
Carlos M. Romero ◽  
Abby-Ann P.H. Redman ◽  
Jen Owens ◽  
Stephanie A. Terry ◽  
Gabriel O. Ribeiro ◽  
...  
2019 ◽  
Vol 3 (4) ◽  
pp. 1383-1388 ◽  
Author(s):  
Breanna M Roque ◽  
Henk J Van Lingen ◽  
Hilde Vrancken ◽  
Ermias Kebreab

Abstract: Enteric methane (CH4) production is the main source of greenhouse gas emissions from livestock globally with beef cattle contributing 5.95% of total global greenhouse gas emissions. Various mitigation strategies have been developed to reduce enteric emissions with limited success. In vitro studies have shown a reduction in CH4 emissions when using garlic and citrus extracts. However, there is paucity of data regarding in vivo studies investigating the effect of garlic and citrus extracts in cattle. The objective of this study was to quantitatively evaluate the response of Angus × Hereford cross steers consuming the feed additive Mootral, which contains extracts of both garlic and citrus, on CH4 yield (g/kg dry matter intake [DMI]). Twenty steers were randomly assigned to two treatments: control (no additive) and Mootral supplied at 15 g/d in a completely randomized design with a 2-wk covariate and a 12-wk data collection periods. Enteric CH4 emissions were measured using the GreenFeed system during the covariate period and experimental weeks 2, 6, 9, and 12. CH4 yield (g/kg DMI) by steers remained similar in both treatments for weeks 2 to 9. In week 12, there was a significant decrease in CH4 yield (23.2%) in treatment compared to control steers mainly because the steers were consuming all the pellets containing the additive. However, overall CH4 yield (g/kg DMI) during the entire experimental period was not significantly different. Carbon dioxide yield (g/kg DMI) and oxygen consumption (g/kg DMI) did not differ between treatments during the entire experimental period. DMI, average daily gain, and feed efficiency also remained similar in control and supplemented steers. The in vivo results showed that Mootral may have a potential to be used as a feed additive to reduce enteric CH4 production and yield in beef cattle but needs further investigation under various dietary regimen.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0199577 ◽  
Author(s):  
Pedro Del Bianco Benedeti ◽  
Mozart Alves Fonseca ◽  
Teshome Shenkoru ◽  
Marcos Inácio Marcondes ◽  
Eduardo Marostegan de Paula ◽  
...  

2016 ◽  
Vol 98 ◽  
pp. 42-53 ◽  
Author(s):  
S. Sjögersten ◽  
S. Caul ◽  
T.J. Daniell ◽  
A.P.S. Jurd ◽  
O.S. O'Sullivan ◽  
...  

2016 ◽  
Vol 45 (6) ◽  
pp. 1979-1987 ◽  
Author(s):  
Chanhee Lee ◽  
Rafael C. Araujo ◽  
Karen M. Koenig ◽  
Michael L. Hile ◽  
Eileen E. Fabian-Wheeler ◽  
...  

2014 ◽  
Vol 75 ◽  
pp. 31-39 ◽  
Author(s):  
Quentin M. Dudley ◽  
Adam J. Liska ◽  
Andrea K. Watson ◽  
Galen E. Erickson

2018 ◽  
Vol 40 (4) ◽  
pp. 315 ◽  
Author(s):  
Jeremy Russell-Smith ◽  
Kamaljit K. Sangha

We explore sustainable land sector opportunities for Australia’s 1.2 million km2 northern savanna rangelands where extensive beef cattle pastoralism is the predominant contemporary land use. Our focal region is characterised by mean annual rainfall exceeding 600 mm, ecologically bountiful wet season water availability followed by 6–8 months of surface water deficit, mostly nutrient-poor soils, internationally significant biodiversity and carbon stock values, very extensive dry season fires in pastorally unproductive settings, a sparse rural population (0.14 persons km–2) comprising a high proportion of Indigenous people, and associated limited infrastructure. Despite relatively high beef cattle prices in recent seasons and property values escalating at a spectacular ~6% p.a. over the past two decades, long-term economics data show that, for most northern regions, typical pastoral enterprises are unprofitable and carry significant debt. Pastoral activities can also incur very significant environmental impacts on soil and scarce dry season water resources, and greenhouse gas emissions, which currently are not accounted for in economic sustainability assessments. Over the same period, the conservation sector (including National Parks, Indigenous Protected Areas) has been expanding rapidly and now occupies 25% of the region. Since 2012, market-based savanna burning projects aimed at reducing greenhouse gas emissions occur over a further 25%. Returns from nature-based tourism focussed particularly on maintaining intact freshwater systems and associated recreational fishing opportunities dwarf returns from pastoralism. The growth of these latter industries illustrates the potential for further development of profitable ‘ecosystem services’ markets as part of a more environmentally and socially sustainable diversified regional land sector economy. We outline some of the imminent challenges involved with, and opportunities for developing, this new industry sector.


Sign in / Sign up

Export Citation Format

Share Document