scholarly journals Linking landscape structure and vegetation productivity with nut consumption by the Cantabrian brown bear during hyperphagia

Author(s):  
José Carlos Pérez-Girón ◽  
Emilio Rafael Díaz-Varela ◽  
Pedro Álvarez-Álvarez ◽  
Orencio Hernández Palacios ◽  
Fernando Ballesteros ◽  
...  
2007 ◽  
Author(s):  
Sean D. Farley ◽  
Herman Griese ◽  
Rick Sinnott ◽  
Jessica Coltrane ◽  
Chris Garner ◽  
...  

Author(s):  
Vivien Cosandey ◽  
Robin Séchaud ◽  
Paul Béziers ◽  
Yannick Chittaro ◽  
Andreas Sanchez ◽  
...  

AbstractBird nests are specialized habitats because of their particular composition including nest detritus and bird droppings. In consequence, they attract a specialized arthropod community considered as nidicolous, which includes species only found in bird nests (strictly nidicolous) or sometimes found in bird nests (facultatively nidicolous). Because the factors influencing the entomofauna in bird nests are poorly understood, in autumn 2019, we collected nest material in 86 Barn Owl (Tyto alba) nest boxes. We investigated whether the invertebrate species richness was related to Barn Owl nest box occupancy, the density of available nest boxes and the landscape structure. We found 3,321 nidicolous beetle specimens belonging to 24 species. Species richness of strictly nidicolous beetles was 2.7 times higher in nest boxes occupied by a family of Barn Owls the previous spring compared to unoccupied nest boxes. It was also higher in sites that were more often occupied by Barn Owls in the five previous years and in areas surrounded by a higher proportion of crop fields. For facultatively nidicolous beetles, the density of Barn Owl nest boxes enhanced the species richness. In conclusion, our study suggests that the strictly nidicolous beetles benefit from occupied nest boxes of Barn Owls, whereas facultatively nidicolous beetles look for nest boxes independently of whether Barn Owls occupy them. Our study highlights the importance of bird nests for a suite of invertebrates.


Zoo Biology ◽  
2021 ◽  
Author(s):  
Annelies De Cuyper ◽  
Marcus Clauss ◽  
Luc Lens ◽  
Diederik Strubbe ◽  
Andreas Zedrosser ◽  
...  
Keyword(s):  

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 146
Author(s):  
Mihai Mustățea ◽  
Ileana Pătru-Stupariu

Human–wildlife interactions (HWI) were frequent in the post-socialist period in the mountain range of Central European countries where forest habitats suffered transitions into built-up areas. Such is the case of the Upper Prahova Valley from Romania. In our study, we hypothesized that the increasing number of HWI after 1990 could be a potential consequence of woodland loss. The goal of our study was to analyse the effects of landscape changes on HWI. The study consists of the next steps: (i) applying 450 questionnaires to local stakeholders (both citizens and tourists) in order to collect data regarding HWI temporal occurrences and potential triggering factors; (ii) investigating the relation between the two variables through the Canonical Correspondence Analysis (CCA); (iii) modelling the landscape spatial changes between 1990 and 2018 for identifying areas with forest loss; (iv) overlapping the distribution of both the households affected by HWI and areas with loss of forested ecosystems. The local stakeholders indicate that the problematic species are the brown bear (Ursus arctos), the wild boar (Sus scrofa), the red fox (Vulpes vulpes) and the grey wolf (Canis lupus). The number of animal–human interactions recorded an upward trend between 1990 and 2018, and the most significant driving factors were the regulation of hunting practices, the loss of habitats, and artificial feeding. The landscape change analysis reveals that between 1990 and 2018, the forest habitats were replaced by built-up areas primarily on the outskirts of settlements, these areas coinciding with frequent HWI. The results are valid for both forest ecosystems conservation in the region, wildlife management, and human infrastructures durable spatial planning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Mohammadi ◽  
K. Almasieh ◽  
D. Nayeri ◽  
F. Ataei ◽  
A. Khani ◽  
...  

AbstractIran lies at the southernmost range limit of brown bears globally. Therefore, understanding the habitat associations and patterns of population connectivity for brown bears in Iran is relevant for the species’ conservation. We applied species distribution modeling to predict habitat suitability and connectivity modeling to identify population core areas and corridors. Our results showed that forest density, topographical roughness, NDVI and human footprint were the most influential variables in predicting brown bear distribution. The most crucial core areas and corridor networks for brown bear are concentrated in the Alborz and Zagros Mountains. These two core areas were predicted to be fragmented into a total of fifteen isolated patches if dispersal of brown bear across the landscape is limited to 50,000 cost units, and aggregates into two isolated habitat patches if the species is capable of dispersing 400,000 cost units. We found low overlap between corridors, and core habitats with protected areas, suggesting that the existing protected area network may not be adequate for the conservation of brown bear in Iran. Our results suggest that effective conservation of brown bears in Iran requires protection of both core habitats and the corridors between them, especially outside Iran’s network of protected areas.


Sign in / Sign up

Export Citation Format

Share Document