Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations

2019 ◽  
Vol 13 ◽  
pp. 100159 ◽  
Author(s):  
Aola Supong ◽  
Parimal Chandra Bhomick ◽  
Mridushmita Baruah ◽  
Chubaakum Pongener ◽  
Upasana Bora Sinha ◽  
...  
2017 ◽  
Vol 19 (10) ◽  
pp. 7399-7409 ◽  
Author(s):  
Isaac W. Boateng ◽  
Richard Tia ◽  
Evans Adei ◽  
Nelson Y. Dzade ◽  
C. Richard A. Catlow ◽  
...  

Lanthanum ferrite (LaFeO3) is a technologically important electrode material for nickel–metal hydride batteries, energy storage and catalysis. In the present study, we have employed spin-polarized density functional theory calculations, with the Hubbard U correction (DFT+U), to unravel the adsorption mechanism of H2 on the LaFeO3(010) surface.


2014 ◽  
Vol 16 (45) ◽  
pp. 24866-24873
Author(s):  
Khaoula Boukari ◽  
Eric Duverger ◽  
Philippe Sonnet

We investigate the adsorption mechanism of a single trans 4-pyridylazobenzene molecule on a doped boron surface with or without boron-defects, by means of density functional theory calculations.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


Sign in / Sign up

Export Citation Format

Share Document