scholarly journals Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector

2018 ◽  
Vol 29 ◽  
pp. 189-196 ◽  
Author(s):  
Riccardo De Santis ◽  
Maria Giovanna Garone ◽  
Francesca Pagani ◽  
Valeria de Turris ◽  
Silvia Di Angelantonio ◽  
...  
2021 ◽  
Vol 53 ◽  
pp. 102296
Author(s):  
Riccardo De Santis ◽  
Maria Giovanna Garone ◽  
Francesca Pagani ◽  
Valeria de Turris ◽  
Silvia Di Angelantonio ◽  
...  

2011 ◽  
Vol 19 (10) ◽  
pp. 1905-1912 ◽  
Author(s):  
Mark E Hester ◽  
Matthew J Murtha ◽  
SungWon Song ◽  
Meghan Rao ◽  
Carlos J Miranda ◽  
...  

2016 ◽  
Vol 2 (8) ◽  
pp. e1600691 ◽  
Author(s):  
Heemin Kang ◽  
Yu-Ru V. Shih ◽  
Manando Nakasaki ◽  
Harsha Kabra ◽  
Shyni Varghese

The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)–derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Rickie Patani

Resolving the mechanisms underlying human neuronal diversification remains a major challenge in developmental and applied neurobiology. Motor neurons (MNs) represent a diverse pool of neuronal subtypes exhibiting differential vulnerability in different human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The ability to predictably manipulate MN subtype lineage restriction from human pluripotent stem cells (PSCs) will form the essential basis to establishing accurate, clinically relevantin vitrodisease models. I first overview motor neuron developmental biology to provide some context for reviewing recent studies interrogating pathways that influence the generation of MN diversity. I conclude that motor neurogenesis from PSCs provides a powerful reductionist model system to gain insight into the developmental logic of MN subtype diversification and serves more broadly as a leading exemplar of potential strategies to resolve the molecular basis of neuronal subclass differentiation within the nervous system. These studies will in turn permit greater mechanistic understanding of differential MN subtype vulnerability usingin vitrohuman disease models.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3087
Author(s):  
Jie Ren ◽  
Chaoyi Li ◽  
Mengfei Zhang ◽  
Huakun Wang ◽  
Yali Xie ◽  
...  

Limited access to human neurons, especially motor neurons (MNs), was a major challenge for studying neurobiology and neurological diseases. Human pluripotent stem cells (hPSCs) could be induced as neural progenitor cells (NPCs) and further multiple neural subtypes, which provide excellent cellular sources for studying neural development, cell therapy, disease modeling and drug screening. It is thus important to establish robust and highly efficient methods of neural differentiation. Enormous efforts have been dedicated to dissecting key signalings during neural commitment and accordingly establishing reliable differentiation protocols. In this study, we refined a step-by-step strategy for rapid differentiation of hPSCs towards NPCs within merely 18 days, combining the adherent and neurosphere-floating methods, as well as highly efficient generation (~90%) of MNs from NPCs by introducing refined sets of transcription factors for around 21 days. This strategy made use of, and compared, retinoic acid (RA) induction and dual-SMAD pathway inhibition, respectively, for neural induction. Both methods could give rise to highly efficient and complete generation of preservable NPCs, but with different regional identities. Given that the generated NPCs can be differentiated into the majority of excitatory and inhibitory neurons, but hardly MNs, we thus further differentiate NPCs towards MNs by overexpressing refined sets of transcription factors, especially by adding human SOX11, whilst improving a series of differentiation conditions to yield mature MNs for good modeling of motor neuron diseases. We thus refined a detailed step-by-step strategy for inducing hPSCs towards long-term preservable NPCs, and further specified MNs based on the NPC platform.


Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
S Ulrich ◽  
S Weinreich ◽  
R Haller ◽  
S Menke ◽  
R Olmer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document