scholarly journals Fibronectin-conjugated thermoresponsive nanobridges generate three dimensional human pluripotent stem cell cultures for differentiation towards the neural lineages

2019 ◽  
Vol 38 ◽  
pp. 101441 ◽  
Author(s):  
Linda Harkness ◽  
Xiaoli Chen ◽  
Zhongfan Jia ◽  
Anthony M. Davies ◽  
Michael Monteiro ◽  
...  
2012 ◽  
Vol 23 (1-4) ◽  
pp. 153-165 ◽  
Author(s):  
Yusuke Ueda ◽  
Satoshi Fujita ◽  
Tatsuya Nishigaki ◽  
Yusuke Arima ◽  
Hiroo Iwata

Author(s):  
Erik McIntire ◽  
Kimberly Leonhard ◽  
Seth Taapken ◽  
Anna Lisa Larson

2021 ◽  
pp. 153537022098580
Author(s):  
Lin Wang ◽  
Zhaohui Ye ◽  
Yoon-Young Jang

The last decade has seen many exciting technological breakthroughs that greatly expanded the toolboxes for biological and biomedical research, yet few have had more impact than induced pluripotent stem cells and modern-day genome editing. These technologies are providing unprecedented opportunities to improve physiological relevance of experimental models, further our understanding of developmental processes, and develop novel therapies. One of the research areas that benefit greatly from these technological advances is the three-dimensional human organoid culture systems that resemble human tissues morphologically and physiologically. Here we summarize the development of human pluripotent stem cells and their differentiation through organoid formation. We further discuss how genetic modifications, genome editing in particular, were applied to answer basic biological and biomedical questions using organoid cultures of both somatic and pluripotent stem cell origins. Finally, we discuss the potential challenges of applying human pluripotent stem cell and organoid technologies for safety and efficiency evaluation of emerging genome editing tools.


Author(s):  
Juan Huang ◽  
Qi Feng ◽  
Li Wang ◽  
Bingying Zhou

Cardiac diseases are the leading cause of deaths worldwide; however, to date, there has been limited progress in the development of therapeutic options for these conditions. Animal models have been the most extensively studied methods to recapitulate a wide variety of cardiac diseases, but these models exhibit species-specific differences in physiology, metabolism and genetics, which lead to inaccurate and unpredictable drug safety and efficacy results, resulting in drug attrition. The development of human pluripotent stem cell (hPSC) technology in theory guarantees an unlimited source of human cardiac cells. These hPSC-derived cells are not only well suited for traditional two-dimensional (2-D) monoculture, but also applicable to more complex systems, such as three-dimensional (3-D) organoids, tissue engineering and heart on-a-chip. In this review, we discuss the application of hPSCs in heart disease modeling, cell therapy, and next-generation drug discovery. While the hPSC-related technologies still require optimization, their advances hold promise for revolutionizing cell-based therapies and drug discovery.


2021 ◽  
Vol 128 (6) ◽  
pp. 775-801
Author(s):  
Giulia Campostrini ◽  
Laura M. Windt ◽  
Berend J. van Meer ◽  
Milena Bellin ◽  
Christine L. Mummery

The ability of human pluripotent stem cells to form all cells of the body has provided many opportunities to study disease and produce cells that can be used for therapy in regenerative medicine. Even though beating cardiomyocytes were among the first cell types to be differentiated from human pluripotent stem cell, cardiac applications have advanced more slowly than those, for example, for the brain, eye, and pancreas. This is, in part, because simple 2-dimensional human pluripotent stem cell cardiomyocyte cultures appear to need crucial functional cues normally present in the 3-dimensional heart structure. Recent tissue engineering approaches combined with new insights into the dialogue between noncardiomyocytes and cardiomyocytes have addressed and provided solutions to issues such as cardiomyocyte immaturity and inability to recapitulate adult heart values for features like contraction force, electrophysiology, or metabolism. Three-dimensional bioengineered heart tissues are thus poised to contribute significantly to disease modeling, drug discovery, and safety pharmacology, as well as provide new modalities for heart repair. Here, we review the current status of 3-dimensional engineered heart tissues.


Sign in / Sign up

Export Citation Format

Share Document