The decoupling effect and driving factors of carbon footprint in megacities: The case study of Xi’an in western China

2019 ◽  
Vol 44 ◽  
pp. 783-792 ◽  
Author(s):  
Yi Yang ◽  
Guanfei Meng
Author(s):  
Min Shang ◽  
Ji Luo

The expansion of Xi’an City has caused the consumption of energy and land resources, leading to serious environmental pollution problems. For this purpose, this study was carried out to measure the carbon carrying capacity, net carbon footprint and net carbon footprint pressure index of Xi’an City, and to characterize the carbon sequestration capacity of Xi’an ecosystem, thereby laying a foundation for developing comprehensive and reasonable low-carbon development measures. This study expects to provide a reference for China to develop a low-carbon economy through Tapio decoupling principle. The decoupling relationship between CO2 and driving factors was explored through Tapio decoupling model. The time-series data was used to calculate the carbon footprint. The auto-encoder in deep learning technology was combined with the parallel algorithm in cloud computing. A general multilayer perceptron neural network realized by a parallel BP learning algorithm was proposed based on Map-Reduce on a cloud computing cluster. A partial least squares (PLS) regression model was constructed to analyze driving factors. The results show that in terms of city size, the variable importance in projection (VIP) output of the urbanization rate has a strong inhibitory effect on carbon footprint growth, and the VIP value of permanent population ranks the last; in terms of economic development, the impact of fixed asset investment and added value of the secondary industry on carbon footprint ranks third and fourth. As a result, the marginal effect of carbon footprint is greater than that of economic growth after economic growth reaches a certain stage, revealing that the driving forces and mechanisms can promote the growth of urban space.


Author(s):  
Timur Özelsel ◽  
Rakesh V. Sondekoppam ◽  
Susanne Koch

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 193
Author(s):  
Fenli Chen ◽  
Mingjun Zhang ◽  
Athanassios A. Argiriou ◽  
Shengjie Wang ◽  
Qian Ma ◽  
...  

The deuterium excess in precipitation is an effective indicator to assess the existence of sub-cloud evaporation of raindrops. Based on the synchronous measurements of stable isotopes of hydrogen and oxygen (δ2H and δ18O) in precipitation for several sites in Lanzhou, western China, spanning for approximately four years, the variations of deuterium excess between the ground and the cloud base are evaluated by using a one-box Stewart model. The deuterium excess difference below the cloud base during summer (−17.82‰ in Anning, −11.76‰ in Yuzhong, −21.18‰ in Gaolan and −12.41‰ in Yongdeng) is greater than that in other seasons, and difference in winter is weak due to the low temperature. The variations of deuterium excess in precipitation due to below-cloud evaporation are examined for each sampling site and year. The results are useful to understand the modification of raindrop isotope composition below the cloud base at a city scale, and the quantitative methods provide a case study for a semi-arid region at the monsoon margin.


Sign in / Sign up

Export Citation Format

Share Document