Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production

2021 ◽  
Vol 167 ◽  
pp. 120722
Author(s):  
Yuan Huang ◽  
Qiang Yu ◽  
Ruirui Wang
2019 ◽  
Author(s):  
Xiaolu Tang ◽  
Nuno Carvalhais ◽  
Catarina Moura ◽  
Bernhard Ahrens ◽  
Sujan Koirala ◽  
...  

Abstract. Vegetation carbon use efficiency (CUE) is a key measure of carbon (C) transfer from the atmosphere to terrestrial biomass, and indirectly reflects how much C is released through autotrophic respiration from the vegetation to the atmosphere. Diagnosing the variability of CUE with climate and other environmental factors is fundamental to understand its driving factors, and to further fill the current gaps in knowledge about the environmental controls on CUE. Thus, to study CUE variability and its driving factors, this study established a global database of site-year CUE based on observations from 188 field measurement sites for five ecosystem types – forest, grass, wetland, crop and tundra. The spatial pattern of CUE was predicted from global climate and soil variables using Random Forest, and compared with estimates from Dynamic Global Vegetation Models (DGVMs) from the TRENDY model ensemble. Globally, we found two prominent CUE gradients in ecosystem types and latitude, that is, CUE varied with ecosystem types, being the highest in wetlands and lowest in grassland, and CUE decreased with latitude with the lowest CUE in tropics, and the highest CUE in higher latitude regions. CUE varied greatly between data-derived CUE and TRENDY-CUE, but also among TRENDY models. Both data-derived and TRENDY-CUE challenged the constant value of 0.5 for CUE, independent of environmental controls. However, given the role of CUE in controlling the spatial and temporal variability of the terrestrial biosphere C cycle, these results emphasize the need to better understand the biotic and abiotic controls on CUE to reduce the uncertainties in prognostic land-process model simulations. Finally, this study proposed a new estimate of net primary production based on CUE and gross primary production, offering another benchmark for net primary production comparison for global carbon modelling.


Author(s):  
Min Shang ◽  
Ji Luo

The expansion of Xi’an City has caused the consumption of energy and land resources, leading to serious environmental pollution problems. For this purpose, this study was carried out to measure the carbon carrying capacity, net carbon footprint and net carbon footprint pressure index of Xi’an City, and to characterize the carbon sequestration capacity of Xi’an ecosystem, thereby laying a foundation for developing comprehensive and reasonable low-carbon development measures. This study expects to provide a reference for China to develop a low-carbon economy through Tapio decoupling principle. The decoupling relationship between CO2 and driving factors was explored through Tapio decoupling model. The time-series data was used to calculate the carbon footprint. The auto-encoder in deep learning technology was combined with the parallel algorithm in cloud computing. A general multilayer perceptron neural network realized by a parallel BP learning algorithm was proposed based on Map-Reduce on a cloud computing cluster. A partial least squares (PLS) regression model was constructed to analyze driving factors. The results show that in terms of city size, the variable importance in projection (VIP) output of the urbanization rate has a strong inhibitory effect on carbon footprint growth, and the VIP value of permanent population ranks the last; in terms of economic development, the impact of fixed asset investment and added value of the secondary industry on carbon footprint ranks third and fourth. As a result, the marginal effect of carbon footprint is greater than that of economic growth after economic growth reaches a certain stage, revealing that the driving forces and mechanisms can promote the growth of urban space.


Sign in / Sign up

Export Citation Format

Share Document