scholarly journals Life Cycle Assessment of a solar thermal system in Spain, eco-design alternatives and derived climate change scenarios at Spanish and Chinese National levels

2019 ◽  
Vol 47 ◽  
pp. 101467 ◽  
Author(s):  
Jaume Albertí ◽  
Juliana Raigosa ◽  
Marco Raugei ◽  
Rafael Assiego ◽  
Joan Ribas-Tur ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2346 ◽  
Author(s):  
M. Mahmud ◽  
Nazmul Huda ◽  
Shahjadi Farjana ◽  
Candace Lang

The demand for clean energy is strong, and the shift from fossil-fuel-based energy to environmentally friendly sources is the next step to eradicating the world’s greenhouse gas (GHG) emissions. Solar energy technology has been touted as one of the most promising sources for low-carbon, non-fossil fuel energy production. However, the true potential of solar-based technologies is established by augmenting efficiency through satisfactory environmental performance in relation to other renewable energy systems. This paper presents an environmental life-cycle assessment (LCA) of a solar-photovoltaic (PV) system and a solar-thermal system. Single crystalline Si solar cells are considered for the solar PV system and an evacuated glass tube collector is considered for the solar thermal system in this analysis. A life-cycle inventory (LCI) is developed considering all inputs and outputs to assess and compare the environmental impacts of both systems for 16 impact indicators. LCA has been performed by the International Reference Life Cycle Data System (ILCD), Impact 2002+, Cumulative Energy Demand (CED), Eco-points 97, Eco-indicator 99 and Intergovernmental Panel on Climate Change (IPCC) methods, using SimaPro software. The outcomes reveal that a solar-thermal framework provides more than four times release to air ( 100 % ) than the solar-PV ( 23 . 26 % ), and the outputs by a solar-PV system to soil ( 27 . 48 % ) and solid waste ( 35 . 15 % ) are about one third that of solar-thermal. The findings also depict that the solar panels are responsible for the most impact in the considered systems. Moreover, uncertainty and sensitivity analysis has also been carried out for both frameworks, which reveal that Li-ion batteries and copper-indium-selenium (CIS)-solar collectors perform better than others for most of the considered impact categories. This study revealed that a superior environmental performance can be achieved by both systems through careful selection of the components, taking into account the toxicity aspects, and by minimizing the impacts related to the solar panel, battery and heat storage.


Author(s):  
Daniel Felipe Rodriguez-Vallejo ◽  
Antonio Valente ◽  
Gonzalo Guillén-Gosálbez ◽  
Benoit Chachuat

Reducing the contribution of the transport sector to climate change calls for a transition towards renewable fuels. Polyoxymethylene dimethyl ethers (OMEn) constitute a promising alternative to fossil-based diesel. This article...


Author(s):  
Stephanie Drozek ◽  
Christopher Damm ◽  
Ryan Enot ◽  
Andrew Hjortland ◽  
Brandon Jackson ◽  
...  

The purpose of this paper is to describe the implementation of a laboratory-scale solar thermal system for the Renewable Energy Systems Laboratory at the Milwaukee School of Engineering (MSOE). The system development began as a student senior design project where students designed and fabricated a laboratory-scale solar thermal system to complement an existing commercial solar energy system on campus. The solar thermal system is designed specifically for educating engineers. This laboratory equipment, including a solar light simulator, allows for variation of operating parameters to investigate their impact on system performance. The equipment will be utilized in two courses: Applied Thermodynamics, and Renewable Energy Utilization. During the solar thermal laboratories performed in these courses, students conduct experiments based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) 93-2010 standard for testing and performance characterization of solar thermal systems. Their measurements are then used to quantify energy output, efficiency and losses of the system and subsystem components.


2013 ◽  
Vol 47 (11) ◽  
pp. 5896-5903 ◽  
Author(s):  
Michael B. Whitaker ◽  
Garvin A. Heath ◽  
John J. Burkhardt ◽  
Craig S. Turchi

2021 ◽  
Vol 1059 (1) ◽  
pp. 012061
Author(s):  
B Kalidasan ◽  
R Divyabharathi ◽  
AK Pandey ◽  
C Subramaniyan ◽  
S Mohankumar

Sign in / Sign up

Export Citation Format

Share Document