scholarly journals Building-integrated solar thermal system with/without phase change material: Life cycle assessment based on ReCiPe, USEtox and Ecological footprint

2018 ◽  
Vol 193 ◽  
pp. 672-683 ◽  
Author(s):  
Chr. Lamnatou ◽  
F. Motte ◽  
G. Notton ◽  
D. Chemisana ◽  
C. Cristofari
2020 ◽  
Vol 24 (1) ◽  
pp. 378-391
Author(s):  
Mikelis Dzikevics ◽  
Ivars Veidenbergs ◽  
Kęstutis Valančius

AbstractIncrease in solar fraction has been noted as one of the main goals for wider application of domestic solar thermal systems. To increase solar fraction, higher energy density thermal storage availability is a key point. In this paper phase change materials have been analysed as part of a domestic solar thermal system. Sensitivity analysis of annual simulation in TRNSYS with climate data of Riga, Latvia is used. The paper also explores better methods for evaluating phase change material (PCM) performance based on temperature measurements in PCM. The results showed that the melting point of PCM and temperature set point of an auxiliary heater have the highest sensitivity of aspects analysed in the paper. It also reports that the coefficient of variation of energy in PCM correlates well with solar fraction and can be used as a parameter to evaluate PCM’s suitability for certain applications.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 160 ◽  
Author(s):  
Mohammad Heidari ◽  
Damien Mathis ◽  
Pierre Blanchet ◽  
Ben Amor

Research Highlights: This is the first study that analyzes the environmental performance of wood-based phase change material (PCM) panels. Background and Objectives: Life cycle assessment (LCA) is a powerful environmental management tool. However, a full LCA, especially during the early design phase of a product, is far too time and data intensive for industrial companies to conduct during their production and consumption processes. Therefore, there is an increasing demand for simpler methods to demonstrate a company’s resource efficiency potential without being data or time intensive. The goal of this study is to investigate the suitability of streamlined LCA (SLCA) tools and methods used in the building material industry, and to assess their robustness in the case study of a wood-based PCM panel. Materials and Methods: The Bilan Produit tool was selected as the SLCA tool and a matrix LCA was selected as the most commonly used SLCA method. A specific case study of a wood-based PCM panel was selected with a focus on its application in building construction in the province of Québec. Results: As a semi-quantitative LCA method, the matrix LCA provided a quick screening of the product life cycle and its hotspot stages, i.e., life cycle stages with high impact. However, the results of the full LCA and SLCA tools were quantitative and based on scientific databases. The use of the PCM panel and heating energy had the highest environmental impacts as compared to other inputs. The results of the full LCA and SLCA also identified energy consumption as a hotspot. Insufficient material or processes in the SLCA databases was one of the reasons for the difference between the results of the SLCA and full LCA. Conclusions: The examined SLCA methods provided proper explanations for the bio-based material in construction, but several limitations still exist, and the methods should be improved to make them more robust when implemented in such a specific sector.


Sign in / Sign up

Export Citation Format

Share Document