Improved-salp swarm optimized type-II fuzzy controller in load frequency control of multi area islanded AC microgrid

2018 ◽  
Vol 16 ◽  
pp. 380-392 ◽  
Author(s):  
Prakash Chandra Sahu ◽  
Sonalika Mishra ◽  
Ramesh Chandra Prusty ◽  
Sidhartha Panda
2012 ◽  
Vol 1 (2) ◽  
pp. 85-95 ◽  
Author(s):  
Yogendra Arya ◽  
H.D. Mathur ◽  
S.K. Gupta

This paper presents a fuzzy logic controller for load frequency control (LFC) of multi-area interconnected power system. The study has been designed for a three area interconnected thermal power stations with generation rate constraint (GRC). Simulation results of the proposed fuzzy controller are presented and it has been shown that proposed controller can generate the good dynamic response following a step load change. Robustness of proposed controller is achieved by analyzing the system response with varying system parameters.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2125
Author(s):  
Ali Dokht Shakibjoo ◽  
Mohammad Moradzadeh ◽  
Seyed Zeinolabedin Moussavi ◽  
Lieven Vandevelde

In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability.


Sign in / Sign up

Export Citation Format

Share Document