scholarly journals Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences

2013 ◽  
Vol 24 (6-7) ◽  
pp. 516-528 ◽  
Author(s):  
Martine E. Maan ◽  
Kristina M. Sefc
Behaviour ◽  
1979 ◽  
Vol 70 (1-2) ◽  
pp. 1-116 ◽  
Author(s):  
I. Bossema

AbstractThe European jay (Garrulus g. glandarius) strongly depends on acorns for food. Many acorns are hoarded enabling the jay to feed upon them at times of the year in which they would otherwise be unavailable. Many of the hoarded acorns germinate and become seedlings so that jays play an important role in the dispersal of acorns and the reproduction of oaks (in this study: Quercus robur, the pedunculate oak). These mutual relationships were analysed both with wild jays in the field (province of Drente, The Netherlands) and with tame birds in confinement. Variation in the composition of the food throughout the year is described quantitatively. Acorns were the stock diet of adults in most months of the year. Leaf-eating caterpillars predominantly occurring on oak were the main food items of nestlings. Acorns formed the bulk of the food of fledglings in June. A high rate of acorn consumption in winter, spring and early summer becomes possible because individual jays hoard several thousands of acorns, mainly in October. In experiments, acorns of pedunculate oak were not preferred over equal sized acorns of sessile oak (which was not found in the study area). Acorns of pedunculate oak were strongly preferred over those of American oak and nuts of hazel and beech. Among acorns of pedunculate oak, ripe, sound, long-slim and big ones were preferred. Jays collect one or more (up to six) acorns per hoarding trip. In the latter case, the first ones are swallowed and the last one is usually carried in the bill. For swallowing the dimensions of the beak imposed a limit on size preference; for bill transport usually the biggest acorn was selected. The greater the number of acorns per trip, the longer was the transportation distance during hoarding. From trip to trip jays dispersed their acorns widely and when several acorns were transported during one trip, these were generally buried at different sites. Burial took place by pushing acorns in the soil and by subsequent hammering and covering. Jays often selected rather open sites, transitions in the vegetation and vertical structures such as saplings and tree trunks, for burial of acorns. In captivity jays also hoarded surplus food. Here, spacing out of burials was also observed; previously used sites usually being avoided. In addition, hiding along substrate edges and near conspicuous objects was observed. Jays tended to hide near sticks presented in a horizontal position rather than near identical ones in vertical position, especially when the colour of the sticks contrasted with the colour of the substrate. Also, rough surfaced substrate was strongly preferred over similar but smooth surfaced substrate. Successful retrieval of and feeding on hoarded acorns were observed in winter even when snow-cover had considerably altered the scenery. No evidence was obtained that acorns could be traced back by smell. Many indications were obtained that visual information from near and far beacons, memorized during hiding, was used in finding acorns. The use of beacons by captive jays was also studied. Experiments led to the conclusion that vertical beacons are more important to retrieving birds than identical horizontal ones. The discrepancy with the jay's preference for horizontal structures during hiding is discussed. Most seedlings emerge in May and June. The distribution pattern of seedlings and bill prints on the shells of their acorns indicated that many seedlings emerged from acorns hidden by jays in the previous autumn. The cotyledons of these plants remain underground and are in excellent condition in spring and early summer. Jays exploited acorns by pulling at the stem of seedlings and then removing the cotyledons. This did not usually damage the plants severely. Jays can find acorns in this situation partly because they remember where they buried acorns. In addition, it was shown that jays select seedlings of oak rather than ones of other species, and that they preferentially inspected those seedlings that were most profitable in terms of cotyledon yield and quality. Experiments uncovered some of the visual cues used in this discrimination. The effects of hoarding on the preservation of acorns were examined in the field and the laboratory. Being buried reduced the chance that acorns were robbed by conspecifics and other acorn feeders. Scatter hoarding did not lead to better protection of buried acorns than larder hoarding, but the spread of risk was better in the former than the latter. It was concluded that the way in which jays hoard acorns increases the chance that they can exploit them later. In addition, the condition of acorns is better preserved by being buried. An analysis was made of the consequences of the jay's behaviour for oaks. The oak does incur certain costs: some of its acorns are eaten by jays during the dispersal and storage phase, and some seedlings are damaged as a consequence of cotyledon removal. However, these costs are outweighed by the benefits the oak receives. Many of its most viable acorns are widely dispersed and buried at sites where the prospects for further development into mature oak are highly favourable. The adaptiveness of the characters involved in preferential feeding on and hoarding of acorns by jays is discussed in relation to several environmental pressures: competition with allied species; food fluctuations in the jay's niche; and food competitors better equipped to break up hard "dry" fruits. Reversely, jays exert several selective pressures which are likely to have evolutionary consequences for oaks, such as the selection of long-slim and large acorns with tight shells. In addition, oak seedlings with a long tap root and tough stem are selected for. Although other factors than mutual selective pressures between the two may have affected the present day fit between jays and oaks it is concluded that several characters of jays and oaks can be considered as co-adapted features of a symbiotic relationship.


2019 ◽  
Vol 286 (1913) ◽  
pp. 20191621 ◽  
Author(s):  
O. M. Selz ◽  
O. Seehausen

The role of interspecific hybridization in evolution is still being debated. Interspecific hybridization has been suggested to facilitate the evolution of ecological novelty, and hence the invasion of new niches and adaptive radiation when ecological opportunity is present beyond the parental species niches. On the other hand, hybrids between two ecologically divergent species may perform less well than parental species in their respective niches because hybrids would be intermediate in performance in both niches. The evolutionary consequences of hybridization may hence be context-dependent, depending on whether ecological opportunities, beyond those of the parental species, do or do not exist. Surprisingly, these complementary predictions may never have been tested in the same experiment in animals. To do so, we investigate if hybrids between ecologically distinct cichlid species perform less well than the parental species when feeding on food either parent is adapted to, and if the same hybrids perform better than their parents when feeding on food none of the species are adapted to. We generated two first-generation hybrid crosses between species of African cichlids. In feeding efficiency experiments we measured the performance of hybrids and parental species on food types representing both parental species niches and additional ‘novel’ niches, not used by either of the parental species but by other species in the African cichlid radiations. We found that hybrids can have higher feeding efficiencies on the ‘novel’ food types but typically have lower efficiencies on parental food types when compared to parental species. This suggests that hybridization can generate functional variation that can be of ecological relevance allowing the access to resources outside of either parental species niche. Hence, we provide support for the hypothesis of ecological context-dependency of the evolutionary impact of interspecific hybridization.


2021 ◽  
Vol 118 (51) ◽  
pp. e2020833118
Author(s):  
Amélie Crespel ◽  
Kevin Schneider ◽  
Toby Miller ◽  
Anita Rácz ◽  
Arne Jacobs ◽  
...  

Fisheries induce one of the strongest anthropogenic selective pressures on natural populations, but the genetic effects of fishing remain unclear. Crucially, we lack knowledge of how capture-associated selection and its interaction with reductions in population density caused by fishing can potentially shift which genes are under selection. Using experimental fish reared at two densities and repeatedly harvested by simulated trawling, we show consistent phenotypic selection on growth, metabolism, and social behavior regardless of density. However, the specific genes under selection—mainly related to brain function and neurogenesis—varied with the population density. This interaction between direct fishing selection and density could fundamentally alter the genomic responses to harvest. The evolutionary consequences of fishing are therefore likely context dependent, possibly varying as exploited populations decline. These results highlight the need to consider environmental factors when predicting effects of human-induced selection and evolution.


2020 ◽  
pp. 268-288
Author(s):  
Emmanuel Milot ◽  
Stephen C. Stearns

As shown throughout this book, urbanization moulds evolutionary processes in many biological systems. But what are its effects on the species that is itself the cause of this radical habitat modification? At least two major cultural transitions in history have involved urbanization: the transition to agriculture, and the continuing transition to modernity. Humans both endure and create the selective pressures associated with urbanization, a process of niche construction with complex evolutionary consequences. Urbanization modifies extrinsic mortality, nutrition, hygiene, demography, the toxicity of air, our microbiota, social interactions, and other factors known to shape selection on morphological, physiological, immunological, life-history, and behavioural traits. Today more than half of humanity lives in cities and is exposed to this new evolutionary context. This chapter presents the elements needed to understand the evolutionary potential of humans living in cities, focusing on traits affecting health. Urbanization can alter the expression of tradeoffs and the selection on traits in ways that change the prevalence of both infectious and non-communicable diseases. The chapter identifies several challenges for research. These include the difficulty of separating the effects of urbanization per se from those of modernization in general, and the need to better integrate eco-evolutionary feedbacks, culture, and learning into microevolutionary models to understand how urban life modifies selection on health. Finally, the chapter discusses why the application to humans of gene editing technologies, such as CRISPR-Cas9, is likely to interact with natural selection, an issue deserving closer attention from evolutionary biologists.


2009 ◽  
Vol 32 (0) ◽  
pp. 49 ◽  
Author(s):  
Olav Hogstad ◽  
Per Gustav Thingstad ◽  
Daverdin Marc

Sign in / Sign up

Export Citation Format

Share Document