Enhanced nitrification at short hydraulic retention time using a 3-stage biological aerated filter system incorporating an organic polishing reactor

2014 ◽  
Vol 136 ◽  
pp. 199-206 ◽  
Author(s):  
Hong-Duck Ryu ◽  
Jin-Sik Kim ◽  
Min-Koo Kang ◽  
Sang-Ill Lee
2013 ◽  
Vol 295-298 ◽  
pp. 1376-1379
Author(s):  
Lei Zhu ◽  
Fang Xing Liu ◽  
Xiao Lin Jiang ◽  
Hong Jiao Song

In this study, the alternating 3-stage biological aerated filter system with the brush as the filler was proposed for campus sewage treatment and the biofilm formation process was researched. Adopting the four-stage inoculated biofilm formation method, the treatment effects of the 3 filter columns respectively lasted 23d, 20d, 23d to reach stable. After the attached biofilm grew steadily, the effluent COD concentration was between 45 mg/L and 95 mg/L, and the removal efficiency was 77%~85%. The effluent NH4+-N concentration of 1st and 3rd filter columns was 11~25 mg/L, and the removal efficiency was 47%~67%; while the effluent NH4+-N concentration of 2nd filter column was 8 ~19 mg/L, the removal efficiency was 64%~ 78%.


2011 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Pramanik Biplob ◽  
Suja Fatihah ◽  
Zain Shahrom ◽  
ElShafie Ahmed

An upflow, partially packed biological aerated filter (BAF) reactor was used to remove nitrogen in the form of ammonia ions by a nitrification process that involves physical, chemical and biological phenomena governed by a variety of parameters such as dissolved oxygen concentration, pH and alkalinity. Dissolved oxygen (DO) and pH were shown to have effects on the nitrification process in this study. Three C:N ratios i.e., 10, 4 and 1 were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 0.405 ± 0.015 kg chemical oxygen demand m−3 d−1. The removal efficiencies of ammonia linearly increase with a rise of the initial concentration of ammonia-nitrogen. The results of the 115 days' operation of the BAF system showed that its overall NH3-N performance was good, where a removal efficiency of 87.0 ± 2.9%, 89.2 ± 1.38% and 91.1 ± 0.7% and COD removal of 87.6 ± 2.9%, 86.4 ± 2.1% and 89.5 ± 2.6% were achieved for the C:N ratios of 10, 4 and 1, respectively on average, over 6 h hydraulic retention time (HRT). No clogging occurred throughout the period although backwashing was eliminated. It was concluded that the BAF system proposed in this study removed nitrogen by the nitrification process extremely well.


2011 ◽  
Vol 65 (19-20) ◽  
pp. 3154-3156 ◽  
Author(s):  
Ying Bao ◽  
Liang Zhan ◽  
Chunxiao Wang ◽  
Yanli Wang ◽  
Wenming Qiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document