Clean preparation of V2O3 by one-step molten salt electrochemical reduction of soluble NaVO3

Author(s):  
Zhonghua Zhao ◽  
Mingyong Wang ◽  
Yunfei Chen ◽  
Yongzheng Jia ◽  
Jialiang An ◽  
...  
Author(s):  
Jinglong Liang ◽  
Jing Wang ◽  
Hui Li ◽  
Chenxiao Li ◽  
Hongyan Yan ◽  
...  

AbstractMassive deployment of lithium-ion battery inevitably causes a large amount of solid waste. To be sustainably implemented, technologies capable of reducing environmental impacts and recovering resources from spent lithium-ion battery have been an urgent task. The electrochemical reduction of LiNiO2 to metallic nickel has been reported, which is a typical cathode material of lithium-ion battery. In this paper, the electrochemical reduction behavior of LiNiO2 is studied at 750 °C in the eutectic NaCl-CaCl2 molten salt, and the constant cell voltage electrolysis of LiNiO2 is carried out. The results show that Ni(III) is reduced to metallic nickel by a two-step process, Ni(III) → Ni(II) → Ni, which is quasi-reversible controlled by diffusion and electron transfer. After electrolysis for 6 h at 1.4 V, the surface of LiNiO2 cathode is reduced to metallic nickel, with NiO and a small amount of Li0.4Ni1.6O2 detected inside the partially reduced cathode. After prolonging the electrolysis time to 12 h, LiNiO2 is fully electroreduced to metallic nickel, achieving a high current efficiency of 98.60%. The present work highlights that molten salt electrolysis could be an effective protocol for reclamation of spent lithium-ion battery.


2022 ◽  
Vol 354 ◽  
pp. 131198
Author(s):  
Zeriş Aksu ◽  
Cengiz Han Şahin ◽  
Murat Alanyalıoğlu

2021 ◽  
pp. 2151021
Author(s):  
Yuxuan Liu ◽  
Xinhua Cheng ◽  
Shenghui Zhang

High-performance capacitive carbon materials, derived from tobacco stalk, were prepared by a one-step carbonization process in molten carbonate. Owing to the high specific surface area (SSA) (1165.9 m2 g[Formula: see text] and heteroatom doping by the activation effect of molten salt medium for 3 h, the as-obtained carbon material with hierarchically porous structure exhibits an ideal capacitive property with delivering specific capacitances of 219.8, 188.0, 176.4, and 168.4 F g[Formula: see text] at 0.2, 0.5, 1, and 2 A g[Formula: see text], respectively, acceptable rate performance with 76.6% capacitance retention in range of 0.2–2 A g[Formula: see text], and good cyclic stability with 93% capacitance retention after 3000 charge–discharge cycles at 1 A g[Formula: see text], as well as energy density of 30.5 Wh kg[Formula: see text] at 0.2 A g[Formula: see text] and power density of 989.6 W kg[Formula: see text] at 2 A g[Formula: see text] in 1 mol L[Formula: see text] H2SO4 aqueous solution using a three-electrode system. Moreover, it delivers specific capacitances of 143.3, 140.2, 137.4, and 134.3 F g[Formula: see text] at 0.2, 0.5, 1, and 2 A g[Formula: see text], respectively, and excellent rate performance with 93.7% capacitance retention in range of 0.2–2 A g[Formula: see text], as well as energy density of 4.9 Wh kg[Formula: see text] at 0.2 A g[Formula: see text] and power density of 488.6 W kg[Formula: see text] at 2 A g[Formula: see text] in 6 mol L[Formula: see text] KOH aqueous solution using a symmetrical two-electrode system. The correlation between hierarchically porous structure with heteroatom doping and capacitive performance is also discussed.


2021 ◽  
Author(s):  
Züleyha Kudaş ◽  
Emir Çepni ◽  
Emre Gür ◽  
Duygu Ekinci

Here, new carbon-based nanostructures were prepared by the one-step electrochemical method using hexagonal and pentagonal polychlorinated organic rings as carbon source. The electrochemical growth of carbon nanostructures on substrates was...


JOM ◽  
2021 ◽  
Author(s):  
Jiaxin Yang ◽  
Wenju Tao ◽  
Liyu Chen ◽  
Jingui He ◽  
Yifan Zhang ◽  
...  

2016 ◽  
Vol 75 (15) ◽  
pp. 69-78
Author(s):  
R. Abdulaziz ◽  
L. D. Brown ◽  
D. Inman ◽  
C. Sharrad ◽  
P. R. Shearing ◽  
...  

2019 ◽  
Vol 318 ◽  
pp. 236-243 ◽  
Author(s):  
Kejia Liu ◽  
Yaowu Wang ◽  
Yuezhong Di ◽  
Jianping Peng

Sign in / Sign up

Export Citation Format

Share Document