A new approach for photovoltaic module cooling technique evaluation and comparison using the temperature dependent photovoltaic power ratio

2020 ◽  
Vol 39 ◽  
pp. 100705 ◽  
Author(s):  
Sakhr M. Sultan ◽  
C.P. Tso ◽  
M.N. Ervina Efzan
2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Abdelhamid Mraoui ◽  
Abdallah Khellaf

Abstract In this work, the design of a hydrogen production system was optimized for Algiers in Algeria. The system produces hydrogen by electrolysis using a photovoltaic (PV) generator as a source of electricity. All the elements of the system have been modeled to take into account practical constraints. The cost of producing hydrogen has been minimized by varying the total power of the photovoltaic generator. An optimal ratio between the peak power of the PV array and the nominal power of the electrolyzer was determined. Photovoltaic module technology has been varied using a large database of electrical characteristics. It was noted that PV technology does not have a very significant impact on cost. The minimum cost is around 0.44$/N m3, and the power ratio in this case is 1.45. This results in a cost reduction of around 12% compared to a unit ratio. The power ratio and cost are linearly dependent. Only a small number of technologies give a relatively low cost of about 0.35$/N m3. These generators are interesting; however, we assumed an initial cost of $2.00/Wp for all technologies. In addition, it was noted that it is possible to increase hydrogen production by 10% by increasing the power of the photovoltaic generator, the extra cost in this case will only be 0.1%.


1991 ◽  
Vol 81 (5) ◽  
pp. 311-314 ◽  
Author(s):  
R. Bonifacio

Author(s):  
Pavel Valentinovich Tikhonov ◽  
Vladimir Aleksandrovich Mayorov ◽  
Konstantin Sergeevich Morenko

The chapter presents the results of the development of two systems. The first is a photovoltaic system parallel to the power supply network of LED lamps. The algorithms of the system operation for both working and emergency lighting are shown. The basic operating modes of the system are considered taking into account the criterion of the minimum cost of electricity generated. These modes provide the most complete use of solar energy in the working day with minimal additional costs, allowing the consumer to save on electricity and increase the reliability of the emergency lighting system. The second system is a solar photovoltaic module built into a standard double-glazed window sash size 730x700 (mm), which is designed to charge a block of lithium-ion batteries with a capacity of 6.8 Ah with an output voltage of 5.25 V, the energy of which can be used to power any device having a USB 2.0 connector. The results of calculation of the required peak photovoltaic power of the module are presented; the technology of its sealing is described.


Sign in / Sign up

Export Citation Format

Share Document