Economic evaluation and energy/exergy analysis of PV/Wind/PEMFC energy resources employment based on capacity, type of source and government incentive policies: Case study in Iran

2021 ◽  
Vol 43 ◽  
pp. 100963
Author(s):  
Seyyed Mostafa Nosratabadi ◽  
Reza Hemmati ◽  
Mosayeb Bornapour ◽  
Mostafa Abdollahpour
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yingbo Ji ◽  
Siwei Chang ◽  
Yuan Qi ◽  
Yan Li ◽  
Hong Xian Li ◽  
...  

Prefabricated construction has been widely accepted as an alternative to conventional cast-in-situ construction, given its improved performance. Great efforts have also been made to develop prefabricated construction technologies in China. However, there is a lack of an appropriate pattern for evaluating its comprehensive economic merits, and reasonable mathematical models for providing a comparative analysis of conventional cast-in-situ and prefabricated building projects have yet to be developed. Therefore, the research in this paper aims to comprehensively evaluate the economic benefits of implementing prefabricated construction techniques in order to surpass the economic barrier and promote the development of prefabricated buildings in China. The comprehensive economic evaluation is formulated in terms of resource-use efficiencies, project progress, and incentive policies. An apartment building in Shanghai is selected as a case study. Construction progress is simulated on the BIM platform when the same case study is rationally transformed from the prefabricated to the conventional cast-in-situ construction technique. The results reveal that the comprehensive economic merit can reach ¥739.6/m2 when selecting the prefabricated construction process. The economic benefit brought by shortening the construction period can be regarded as the most significant contributor. Yet, the current incentive policies only contribute 7.1% of the comprehensive economic evaluation. Overall, this research contributes an assessment framework for decision-making in the technique management of building construction. The BIM-based simulation approach can greatly help investors to identify the relevant economic factors and adopt the latest incentive policies.


Author(s):  
Giuseppe Marco Tina ◽  
Salvatore Cavalieri ◽  
Gian Giuseppe Soma ◽  
Gianni Viano ◽  
Sebastiano De Fiore ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 280
Author(s):  
Dmytro Levchenko ◽  
Andrii Manzharov ◽  
Artem Artyukhov ◽  
Nadiya Artyukhova ◽  
Jan Krmela

The article deals with the study on the efficiency of units for porous ammonium nitrate production. The ways which increase the effective implementation of energy resources are determined by including the ejector recycling module, heat and mass exchangers that utilize principles of regenerative indirect evaporative cooling, and the sub-atmospheric inverse Brayton cycle. Mixed exergy analysis evaluates all flows of the system contour as those of the same value. The target parameter for determining the efficiency of both systems is the ratio of the unit’s productivity to the exergy expenditures to produce the unit mass of the product. As a result, it is found that the mentioned devices and units enable to increase the efficiency of the basic scheme by 87%.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3877 ◽  
Author(s):  
F. Javier Batlles ◽  
Bartosz Gil ◽  
Svetlana Ushak ◽  
Jacek Kasperski ◽  
Marcos Luján ◽  
...  

An important element of a solar installation is the storage tank. When properly selected and operated, it can bring numerous benefits. The presented research relates to a project that is implemented at the Solar Energy Research Center of the University of Almeria in Spain. In order to improve the operation of the solar cooling and heating system of the Center, it was upgraded with two newly designed storage tanks filled with phase change materials (PCM). As a result of design works, commercial material S10 was selected for the accumulation of cold, and S46 for the accumulation of heat, in an amount of 85% and 15%, respectively. The article presents in detail the process of selecting the PCM material, designing the installation, experimental research, and exergy analysis. Individual tasks were carried out by research groups cooperating under the PCMSOL EUROPEAN PROJECT. Results of tests conducted on the constructed installation indicate that daily energy saving when using a solar chiller with PCM tanks amounts to 40% during the cooling season.


Sign in / Sign up

Export Citation Format

Share Document