Influence of cellulose separators in coin-sized 3D printed paper-based microbial fuel cells

2021 ◽  
Vol 47 ◽  
pp. 101535
Author(s):  
U.S. Jayapiriya ◽  
Sanket Goel
Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3635
Author(s):  
Pavlina Theodosiou ◽  
John Greenman ◽  
Ioannis A. Ieropoulos

Microbial Fuel Cells (MFCs) employ microbial electroactive species to convert chemical energy stored in organic matter, into electricity. The properties of MFCs have made the technology attractive for bioenergy production. However, a challenge to the mass production of MFCs is the time-consuming assembly process, which could perhaps be overcome using additive manufacturing (AM) processes. AM or 3D-printing has played an increasingly important role in advancing MFC technology, by substituting essential structural components with 3D-printed parts. This was precisely the line of work in the EVOBLISS project, which investigated materials that can be extruded from the EVOBOT platform for a monolithically printed MFC. The development of such inexpensive, eco-friendly, printable electrode material is described below. The electrode in examination (PTFE_FREE_AC), is a cathode made of alginate and activated carbon, and was tested against an off-the-shelf sintered carbon (AC_BLOCK) and a widely used activated carbon electrode (PTFE_AC). The results showed that the MFCs using PTFE_FREE_AC cathodes performed better compared to the PTFE_AC or AC_BLOCK, producing maximum power levels of 286 μW, 98 μW and 85 μW, respectively. In conclusion, this experiment demonstrated the development of an air-dried, extrudable (3D-printed) electrode material successfully incorporated in an MFC system and acting as a cathode electrode.


2018 ◽  
Vol 6 ◽  
Author(s):  
Bin Bian ◽  
Chunguang Wang ◽  
Mingjun Hu ◽  
Zhaoliang Yang ◽  
Xiaobing Cai ◽  
...  

Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


2021 ◽  
Vol 775 ◽  
pp. 145904
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Evy Widyaningsih ◽  
Sunah Kim ◽  
Younggy Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document