oxygen sensors
Recently Published Documents


TOTAL DOCUMENTS

833
(FIVE YEARS 91)

H-INDEX

62
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Yanyu Wu ◽  
Gregory D. Sutton ◽  
Michael D. S. Halamicek ◽  
Thomas S. Teets

In this work we introduce a new series of ratiometric oxygen sensors for hypoxic environments based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Some of the complexes exhibit only phosphorescence originating from the cyclometalated Ir moiety, as a result of excited-state energy transfer from the coumarin to the Ir-centered excited states. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligands and phosphorescence from the cyclometalated iridium synthons, and hence function as ratiometric oxygen sensors. Oxygen quenching experiments with these complexes demonstrate that the iridium centered phosphorescence is quenched under O₂ while fluorescence is unaffected. These sensors have good signal resolution, and the sensitivity and dynamic range, measured with Stern-Volmer analysis, span two orders of magnitude. This work demonstrates that this simple, modular approach for conjoining fluorescent and phosphorescent molecules can produce effective oxygen sensors with a wide range of attributes.


2021 ◽  
Vol 194 (1) ◽  
Author(s):  
Ying Zhang ◽  
Yingying Zhang ◽  
Da Yuan ◽  
Yunyan Zhang ◽  
Bingwei Wu ◽  
...  

2021 ◽  
Author(s):  
Yanyu Wu ◽  
Gregory D. Sutton ◽  
Michael D. S. Halamicek ◽  
Thomas S. Teets

In this work we introduce a new series of ratiometric oxygen sensors for hypoxic environments based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Some of the complexes exhibit only phosphorescence originating from the cyclometalated Ir moiety, as a result of excited-state energy transfer from the coumarin to the Ir-centered excited states. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligands and phosphorescence from the cyclometalated iridium synthons, and hence function as ratiometric oxygen sensors. Oxygen quenching experiments on these complexes demonstrate that the iridium centered phosphorescence is quenched under O₂ while fluorescence is unaffected. These sensors have good signal resolution, and the sensitivity and dynamic range, measured with Stern-Volmer analysis, span two orders of magnitude. This work demonstrates that this simple, modular approach for conjoining fluorescent and phosphorescent molecules can produce effective oxygen sensors with a wide range of attributes.


2021 ◽  
Author(s):  
N Ramshanker ◽  
Kolla Lakshmi Ganapathi ◽  
M S Bhat ◽  
S Mohan

2021 ◽  
Vol 7 (4) ◽  
pp. 139-152
Author(s):  
José Nhanga

The present work aimed to study a family of solid ceramic electrolytes based on magnesium oxide doped zirconium oxide, usually identified as Mg-PSZ (zirconia partially stabilized with magnesia), used in the manufacture of oxygen sensors for molten metals. A set of electrolytes was prepared by mechanical (milling) and thermal (sintering) processing, varying the composition in magnesia and the cooling rate from the sintering temperature. These two parameters are essential in terms of phase composition and microstructure of Mg-PSZ, determining the behavior of these materials. The structural and microstructural characterization was done by means of X-ray diffraction (XRD). The electrical properties were analyzed by impedance spectroscopy in air. In general, the results obtained from various concentrations of dopant, different cooling rates and the same sintering step condition showed an increased conductivity for samples with predominance of high temperature stable phases (tetragonal and cubic).


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1441
Author(s):  
Yumei Luo ◽  
Xing Xu ◽  
Yudong Xia ◽  
Shengli Pang ◽  
Fen Xu ◽  
...  

Thin films of Ca-doped double perovskite, PrBa0.7Ca0.3Co2O5+δ (PBCC), were epitaxially grown on (001) SrTiO3, and their redox reactions under a switching flow of H2 and O2 gases were examined at various temperatures by measuring the resistance R(t) of the films as a function of the gas flow time t. In the temperature range between 350 and 725 °C, these thin films are reduced and oxidized in an ultrafast manner under the flow of H2 and O2 gases, respectively, suggesting that PBCC thin films are promising candidates for developing ultra-sensitive oxygen sensors or SOFC cathodes at intermediate or high temperatures. When the gas flow is switched to O2, the reduced PBCC thin films exhibit a negative resistance at temperatures above 600 °C but a positive resistance at temperatures below 600 °C. The probable cause for these anomalous transport properties is the diffusion of the H atoms from the cathode to the anode in the PBCC film, which provides a current opposite to that resulting from the external voltage.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sung-Phil Heo ◽  
Suyong Jeong

The Internet of things (IoT) helps our everyday lives such as by monitoring objects and tracking behaviors in various settings, but studies on enhancing the bathroom experience are rare. This article describes full details about development and implementation of a smart health-monitoring bidet based on our study published previously in the conference. A smart bidet system is designed to monitor the users’ health through several contact-type sensors, such as pressure, oxygen, and thermometer. The system is equipped with a built-in artificial intelligence software platform and is designed to detect anal and spinal diseases. The attached sensors normally operate under waterproof conditions: we tested their performances under X6 international protection marking conditions. These devices were designed to operate properly even in extremely waterproof conditions. The temperature, pressure, and oxygen sensors of the bidet system had error rates of about 4.1, 0.6, and 1.1 percent, respectively.


2021 ◽  
Author(s):  
Huahua Cui ◽  
Shanshan Wu ◽  
Lei Wang ◽  
Xiangzhong Sun ◽  
He Zhang ◽  
...  

Abstract In this study, we aimed to synthesize magnetically well-dispersed nanosensors for detecting dissolved oxygen (DO) in water, and explore their biological applications. Firstly, we synthesized two kinds of magnetic nanoparticle with average sizes of approximately 82 nm by one-step emulsion polymerization: polystyrene magnetic nanoparticles (Fe3O4@Os1-PS) and polymethylmethacrylate magnetic nanoparticles (Fe3O4@Os1-PMMA). Both types of nanoparticle present good dispersibility and fluorescence stability. The nanoparticles could be used as oxygen sensors that exhibited a high DO-sensitivity response in the range 0-39.30 mg/L, with a strong linear relationship. The nanoparticles have good magnetic properties, and so they could be recycled by magnet for further use. Recovered Fe3O4@Os1-PS still presented high stability after continued use in oxygen sensing for one month. Furthermore, Fe3O4@Os1-PS was employed for detecting the bacterial oxygen consumption of Escherichia coli (E-coli) to monitor the metabolism of bacteria. The results show that Fe3O4@Os1-PS provide high biocompatibility and non-toxicity. Polystyrene magnetic nanoparticles therefore present significant potential for application in biological oxygen sensing.


2021 ◽  
Vol MA2021-02 (58) ◽  
pp. 1692-1692
Author(s):  
Abhiroop Mishra ◽  
Zachary Tyson Gossage ◽  
Dipobrato Sarbapalli ◽  
Joaquin Rodriguez Lopez

Sign in / Sign up

Export Citation Format

Share Document